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FOREWORD

The project 23297-EG "Fundamental Mechanism of Atomization" was
under the directorship of Dr. David Mann of the Engineering Science Division of the
Army Research Office. The period of this project is from 15 May 1986 to 30 July
1989. The grant number of this project is DAAL03-86-K-0072. During the project
period, the writer also received an instrumentaton grant from the Department of
Defense-University Research Instrumentation Program for FY87.




TABLE OF CONTENTS

1.Problem Statement . . . . . . . . . .. ..o o000
2. Summary of ResearchResults . . . . . . . . . . . . . ... .. ..
3.Listof Publications . . . . . . . . .. .. ..o 0000
4. Participating Personnel . . . . . . . . . . . . .. ..o 0.
S.Bibliography . . . . . . . . . .00 0000 s oo
6. Appendices . . . . . . . L L L Lo 0oL 0L e e e e e e

A. Atomization of a liquid jet

B. Absolute instability of a liquid jet in a gas

C. Breakup of a swirling liquid jet

D. Mechanism of the breakup of liquid jets

E. Energy budget in atomization

F. Navier-Stokes flow for the initial stage of atomization

G. Toward monodispersed atomization

H. Letters of confirmation

[3° JEE S I ]




1. Problem Statement

The physical mechanism of atomization is investigated. Atomization is a
process of breaking up liquid jets or sheets into droplets of sizes much msaller than the
jet or sheet thickness. The process is encountered in diesel engine fuel sprays and
many other important industrial processes. The fundamental knowledge of the
mechanism involved in the process is essential for a rational design of efficient devices
which use atomization processes.

2. Summary of Research Results

A rigorous nonlinear theory of atomization is constructed. The governing
equations are the Navier-Stokes equations. The boundary conditions involve the
unknown boundary of an atomizing jet. This is the sourct of mathematical difficulty
which has prevented many previous workers from obtaining rigorous theoretical
results. Our new approach overcame this difficulty. The relevant system of partial
diferential equations are reduced to a system of nonlinear ordinary differential
equations by use of the Galerkin projection and a finite difference discretization
respectively in the radial and axial direction of the jet. The reduced system is solved
with given initial conditions for various flow parameters. The theoretical results reveal
that the origin of atomization is the pressure fluctuation at the core of the liquid jet.
This pressure fluctuation resonates subharmonically the interfacial capillary waves
which led to the formation of ligaments which are the precursors of the atomized
droplets. These processes are depicted in detail in Appendices F and E. It is also
shown that an external forcing with a frequency much smaller than the capillary wave
frequency cannot alter the most popular droplet size but tends to increase the number of
larger droplets which scale with the wave packet length shown in figure 5 of Appendix
F. However, when the external forcing frequency is fine-tuned to the capillary wave
frequency (Appendices A and D), a narrow size distribution of droplets may be
obtained. This idea led to an exploratory project of monodispersed droplet generation
which is now funded by NSF. The demonstration of this idea by use of the Aerometric
Particle Analyzer, which was purchased with the aid of a DoD instrumentation grant, is
given in Appendix G. The results given in Appendix B imply that in order to avoid
extinction of combustion processes in internal combustion engines, one must operate at
a Weber number much smaller than the critical Weber number which is a function of
the Reynolds number and the gas to liquid density ratio. The results in Appendix C
show that adding swirl to liquid jets may result in a wider size distribution which may
be exploited for more efficient use of fuel.




3. List of Publications

Six joumal publications have resulted from this research project. The
following three articles have already appeared.

a. Lin, S.P. and Kang, D.J.,, "Atomization of a Liquid Jet,"” Physics of Fluids, 30, 2000,
1987.

b. Lin, S.P. and Lian, Z.W., "Absolute Instability of a Liquid Jet in Gas," Physics of
Fluids, A, 1, 490, 1989.

c. Kang, D.J. and Lin, S.P., "Breakup of a Swirling Liquid Jet," Int. J. of Eng. Fluid
Mech., 2, 47, 1989.

The following three papers have been accepted for publication. The letters of
acceptance are given in Appendix H.

d. Lin, S.P. and Lian, ZW., "Mechanisms of the Breakup of Liquid Jets," AIAA
Journal.

e. Lin, S.P. and Creighton, B.J., "Energy Budget in Atomization," Aerosol Science and
Technology.

f. Kang, D.J. and Lin, S.P., "Navier-Stokes Flow for the Initial Stage of Atomization,"
J. Colloid and Interface Science.

4. Participating Personnel
The following individuals have participated in the undertaking of this project.
a. Dr. S.P. Lin, Professor, Principal Investigator

b. Dr. D.J. Kang, Graduate Research Assistant. Completed Ph.D. degree 29 September
1988. Thesis title: "Fundamental Mechanism of Liquid Jet Atomization".

¢. Mr. B.J. Creighton, Graduate Research Assistant. Completed M.S. degree. May
1989. Thesis title: "Energy Balance in Breakup of Liquid Jets and Curtains"

d. Mr. D. Woods, Graduate Research Assistant.
e. Mr. E. Ibrahim, Graduate Research Assistant.
f. Mr. Z.W. Lian, Graduate Teaching Assistant.
§. Bibliographies

Relevant bibliographies are cited in the references sections of the articles
included in the appendices.




6. Appendices




APPENDIX A

Atomization of a liquid jet

S.P. Linand D.J. Kang
Department of Mechanical and Industrial Engineering, Clarkson University, Potsdam, New York 13676

(Received 30 October 1986; accepted 3 April 1987)

Guneration of ripples by wind blowing over a viscous fluid was investigated by G. 1. Taylor

[ The Scientific Papers of G. I. Tay'or (Cambridge U. P., Cambridge, 1963), Vol. 3, No. 25]
- with linear stability analysis. Taylor considered the case of temporally growing disturbances in
- a low density gas and applied his results to explain the process of atomization of a liquid jet
injected into a low density gas. Taylor’s analysis is extended here to investigate the case of a
spatially growing disturbance in a dense gas. Taylor showed that temporal disturbances of
wavelength sherter than the capillary length are stable. The same is found for the spatial
disturbances. Each type of disturbance possesses a maximum growth rate with a specific
wavelength and frequency. The atomized droplet size corresponding to the maximum growth
rate is shown in both theories to decrease inversely as the square of the jet velocity. While the
maximum growth rate increases as the square root of the gas-to-liquid density ratio when A 2
exceeds 1 for the temporal disturbances, the same dependence on the density ratio does not
hold for spatial disturbances until 4 ? exceeds 100, where A4 ? is a flow parameter representing
the ratio of surface force to the viscous force. When A4 ? exceeds 100 the growth rates predicted
by two theories deviate significantly only at air pressure higher than 10 atm for most liquids at
room temperature. However, for all parameters, the spray angle changes along the jet axis
according to the spatial theory, but remains constant according to the temporal theory. It is
shown that the viscous force in the liquid may be increased relative to the surface tension force
to the point that no discernable spray angle may be observed in practice. Then an intact jet
without atomization may result. It is shown that the onset of atomization is primarily caused
by the pressure fluctuation which resonates the capillary waves. The results on the interfacial

amplification rate suggest that a sufficiently large initial amplitude at the nozzle exit is

essential for the onset of atomization.

1. INTRODUCTION

The process of breaking up a liquid jet into droplets of
diameters much smaller than the jet diameter is called jet
atomization. This process has various applications, includ-
ing the liquid fuel injection in internal combustion engines,
spray coatings of protective materials on surfaces, and
sprays of pesticides. Despite its practical importance, the
mechanism of atomization is not yet well understood. A con-
cise review of works in this area is included in a recent article
by Reitz and Bracco.' In contrast to the breakup of ink jets at
small Reynolds numbers into droplets of sizes comparable
with the jet diameter,”~ the atomization of jets takes place at
large Reynolds numbers. While the seeds of atomization
may be already sowed in the flow inside of the jet nozzle, the
atomization site is actually at the liquid—gas interface. The
most cultivated theory of atomization postulates that the
aerodynamic interaction at the liquid-gas interface creates
the unstable wave growth which eventually leads to the for-
mation of small droplets.’>= One of the most serious weak-
nesses in the existing aecrodynamic interaction theory is that
the disturbance is assumed to be temporally growing every-
where in the jet at the same rate, while the observed distur-
bance actually grows spatially along the jet. The importance
of this distinction has already been demonstrated by Keller
et al’ for the case of low speed jet breakup. Moreover, it is
known'®"' that flow which is stable with respect to tempor-
ally varying disturbances may actually become unstable
with respect to spatially varying disturbance. In this work,

2000 Phys. Fiuids 30 (7), July 1987
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we investigate the stability of a liquid jet issued into an am-
bient gas with respect to spatially growing disturbances. The
results are used to explain the existence of the intact length,
the formation of spray angle, and some aspects of the mecha-
nism of atomization.

Il. STABILITY ANALYSIS

Consider the axisymmetric liquid jet injected into an
unbounded gas, as shown in Fig. 1. The liquid is an incom-
pressible Newtonian fluid and the gas is assumed to be an
incompressible inviscid fluid. The governing differential
equations are

AV, +V.VV, = — (1/p,)VP, 4+ v,V?V,,

VeV, =0 (i=12),
where i = 1 denotes the liquid and / = 2 denotes the gas, V is
the velocity, V is the gradient operator, p is the density, f is
the time, P is the pressure, v is the kinematic viscosity, and
V2is the Laplacian. Note that in order to focus our attention
of the aerodynamic interaction between liquid and gas, we
have neglected the gravitational force in (1). Note that
v, = 0. The boundary conditions at the interface r = 7 are
the kinematic boundary condition'?

(1)

V,», =al7]+ Vu 3:"7 (2)
and the dynamic boundary condition'?
7,0 — 170 —on(1/R, + 1/R;) =0, (3)

© 1987 American institute of Physics 2000
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m is a unit normal vector pointing into the liquid; the sub-
scripts r and z denote, respectively, the »and z components of
the velocity in the cylindrical coordinate system; t is the
stress tensor; o is the constant surface tension; and R, and R,
are the principal radii of the interface. Here R, and R, are
pasitive if measured from the center of curvature in the di-
rection of n. There exists a basic state

V,= —i,U,, V,=0, P,—P,=0/a, n=a, (4)

which satisfies (1) and its boundary conditions. This basic
state represents an axisymmetric cylindrical jet of radius a
injecting at a constant speed U, into an unbounded quies-
cient gas. To investigate the manner in which this basic state
becomes unstable, we perturb the fiow with disturbances

V,=V,+V, P=P +P,, n=a+¢{. (S)

Substituting (5) into (1), canceling out the basic state part,
neglecting the nonlinear term, and expressing the resulting
equations in terms of the dimensionless variables

(xpd) = (rz,$)/a, T=1/(a’Uy),
v, =(uw)=(V,V,) /U, p =P/pUi,
we have
(3. - 8,8,)v, = — (p,/p,)Vp, + (8, /R)V?V,, (6)
Ve, =0, 7

where R = Reynolds number = Ua/v, and §,, is the
Kronecker delta function. Her= we consider only the axi-
symmetric disturbance. The corresponding linearized
boundary conditions are

v,=d,-6,d, vi=v, u,+v,=0,
P2— P +2v,,/R —We(d+dn) =0,

2001 Phys. Fluids, Vol. 30, No. 7, .Juty 1987

where subscripts x and y denote partial differentiaticn and
We is the Weber number defined by

We=0a/p,U}a.

Equation (7) is the necessary and sufficient conditinn for the
existence of a streamfunction ¥ such that

xvn = ¢1y' xul = - wu'

where subscripts x and y denote partiai differentiation. Tak-
ing the curl of (6) and expressing the resulting equation in
terms of ¥, we have

[3. - (6,,E‘/R)]E2l//, —6,,52111,, =90, (8)
vhere
E?=4, — (1/x)d, +d,. (9

The corresponding linearized boundary conditions at x = 1
in terms of ¢ are
v,/x=d, —d, (10)
- (¥, /x), + (¥,,/x), =0, (11)
P:— P+ 24, /x —¥,,/x*)/R — We(d +d,,) =0.
(12)
The normal mode solutions of (8) are given by
d = Cyexp(iky + wt),
¥, = x exp(iky + wm){C,1,(Ax) + C,K (Ax)

+ (Gl (kx) + CK,(kx)}}, (13)
¥, = — ixexp(iky + wr){B,J,(kx) — B,K,(kx)],

where k is the wavenumber, w is the wave frequency, K 'sand
I's denote the modified Bessel functions, C's and B 's are the
integration constants, and

A'=Rw-—ik), Al=k?+12
For boundness of the solution, we require
B, = C, = C, = 0. Upon substitution of the above general
solution into (6), we find

pr= —i(w — ik)Cdy(kx)exp(iky + wr), (14)

p:= — (p/p)wB . Ky(kx)exp(iky + wT).
The constants C,, C,, C,, and B, in the solution can be deter-
mined by use of the four boundary conditions (10)-(12).
The nontrivial solution of this system exists if the determi-
nant of the coefficient matrix vanishes. This condition leads
to the following characteristic equation:

(w — ik)? +

k2 (I7k)  2kA _Il(k)lz(l))
R\ Iy~ A7+ k? I(bL(A)
2 2
X (@ — ik) + w2 AT =k Ko(o)1, (k)
pu A+ k7 K (k) Io(k)
2 2
Wk — kAR L)

2 =R 15
AT+ k2 I (k) (1)

In the limiting case of p, = u; = 0, (15) reduces to
(0 ~ ik)* = We k(1 — k)1,(k)/Io(k),

which is the axisymmetric result of Rayleigh for a low speed
inviscid jet modified by Keller er al.® in their study of spatial-
ly growing long wave disturbances.
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Jet atomization produces droplets of diameters muck
smaller than the jet diameter. The appropnate limiting case
is therefore k = Ka as a— «, where K is the dimensional
wavenumber. In the limit of k- - oo, (!5) reduces to

[R(w — ik) +2k%)> + R*We k> + (p,/p)R a?
—4k°A=0.

In dimensional form this equation becomes

p(Q — KUy + 2v,K ) + 0K ? + p,01?

—4Kp v (KW + Q —iKUy)'? =0, (16)
where 1 = w(Uy/a). Equation (16) reduces to the charac-
teristic equation obtained by Taylor'? in his study of the
generation of ripples by wind over a viscous fluid when
(Q — iKU,) is replaced by his complex wave frequency a.
This is as it should be since in the limit of @ - o the present
problem is identical to Taylor’s problem if we view the tem-
porally growing ripples in a reference frame traveling at a
velocity — i, U,. While the complex wave frequency viewed
in an inertia! frame is {2, the frequency viewed in a frame
moving with — i, Uy is @ — iK U, In fact, the same transfor-
mation reduces (15) io Eq. (5) of Reitz and Bracco.' How-
ever, it should be emphasized that this argument is valid only
for temporally growing disturbances in which X is real. For
such disturbances, the imaginary part of {, i.e., {1,, gives the
wave frequency and the real part {1, gives the amplification
rate. It is seen from (13) that the growth rate of temporally
growing disturbances is the same everywhere regardless of
the values of x and y. This is contrary to what is observed in
an atomizing jet in which the disturbance grows spatially
from a zero displacement at the nozzle exit. For such distur-
bances, K = K, + iK, is complex, but QQ =i{}, is purely
imaginary. Here K is the spatial growth rate of a distur-
bance of wavenumber K, with a frequency 2;. Hence, the
spatially growing wave phenomenon is not invariant with
respect to a Galilean transformation. Consequently, to be
consistent with the observation that the interfacial displace-
ment is zero for all time at the nozzle exit, we must place the
origin of the coordinate at the nozzle exit, as shown in Fig. 1.

In the limiting case of a — &, @ can no longer be used as
the characteristic length. Let the characteristic length and
time be, respectively,

a=0/pUd a*/v,
and define the dimensionless frequency and wavenumber,
respectively, by

iw, = N/(v,/a*), k=Ka.
Then (16) can be rewritten in a dimensionless form as
[i(w, — kA /p) + 2k*)? + A% — P’}

—4k°[k? +i(o, — kA /p)})'? =0,

where

p= (/P A= (a/pvUp)/p.
For a given set of parameters p, A, (17) can be solved for the
spatial amplification rate , and the oscillation frequency w,
for various values of k, .

1t is easily verified that (17) has the following two neu-
tral solutions for all 4 and p:

aamn

2002 Phys. Fiuids, Vol. 30, No. 7, July 1987

(a) k, =k, =w,=0
and

(b) k, =1, k, =0, w, =4 /p.
Near the first neutral solution (a), we have

k,=0+ Ak,, k, =0+ Ak,, o, =0+ Aw,.
Substituting these into (17) and retaining only the first-or-
der terms, we have

i[Aw, — A(Ak, +ibk,)/p] = pAow,.
The solution of this equation gives

Ak, = pAw,/A, Ak, =p*Aw,/A =pAk,.

Thus as &, increases from O to Ak,, k, becomes positive. It
follows from (13) and the fact that the jet is issued into the
negative y direction that the unperturbed surface implied by
(a) is unstable. Similarly, substituting the expansion near
the point specified by (b), i.e.,

k, =1+ Ak, k, =Ak, o, =(A/p)+bw,

into (17) and retaining only the first-order terms we have
from the rea! and imaginary parts,

—2Aw, + 20k, /p* + 3AAk,/p =0,
28w, + 34 %Ak, — 24Ak,/p = 0.

Elimination of Aw, between these two equations gives
Ak, = — [A/p/(2p™% +347)]Ak,.

Thus as &, decreases from k, > I to k, < I, k, changes from
negative to positive at k, = 1 for all 4 and p. Hence, the jet is
always unstable for all relevant parameters, for all k, < 1.
The growth rate &, of the disturbance increases as &, is de-
creased from | and then decreases again near k, = 0to zero.
Thus there is a maximum growth rate k,, between &k, =1
and k, = 0 for any given A and p. In order to determine the
wavelength correspond.ng to the maximum spatial growth
rate, we must solve (17) numerically. To do this, we solve
simultaneously the following two equations obtained from
the real and imaginary parts of (17):

(201 —=Z?) + BZ})? -~ (Y- B +4Z)?

+ (A%k,)(1 =3Z%)
—p Y2 —4(1 — 3Z*)F'? cos(4/2)

+4(3Z — Z%)F " sin(4/2) =0, (18)
2(2(1-Z* + BZ)(Y—-B+42)

+ (4%/k,)(3Z - 2Z7)

—4(1 - 3Z3)F'sin(¢/2)

—4(3Z — Z*)F'? cos(¢/2) =0, (19)
where

Z=k/k,, Y=w/k?, B=A/pk,

F={[(1-Z* +BZ)*+ 2Z+Y-B)}'",
¢=tan"'[(2Z+ Y-PR) /(1 -2+ B2Z)].
Equations (18) and (19) have been solved numerically by

use of the modified Newton method'* to find k, and w, corre-
sponding to a given set of k, for various values of 4 and p.
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Before giving the numerical results, some comments on
the relation between the temporal and spatial disturbances
will be made. Assuming the wave frequency to be negligibly
small, Taylor'® obtained numerically the following dimen-
sional temporal growth rate from a characteristic equation
related to (16), which was explained earlier:

Q= (2/a)U, p(Sk/A), (20)

where S is the real part of Taylor's dimensionless complex
frequency. To compare with our results, we normalize the
above frequency with our characteristic time, i.e., a’/v, and
obtain

w,(T) = (&*/v,)Q = (a°/v\)(2U, p/a) (Sk }/A) = 25k},
210
where T in parentheses denotes the temporal case. Accord-

ing to the Gaster theorem'® we have the following relations,
near k, = 0, between the temporal and spatial disturbances:

o, =w,(T), (22)
dw,(T)/dk,

Note that when w, — k4 /p in (17) is replaced by w, and &

is regarded as real, (17) is reduced to the characteristic

equation of Taylor.'> Thus w,(T) in the present inertial
~frame is related to that in Taylor’s'* moving frame by

@, (T) =wa(T) + k,A/p. (24)

Taylor'? assumed w,, (T) to be negligibly small. In order to
better compare Taylor’s'® results with ours, we solved his
characteristic equation without putting w, (T) = 0. Our nu-
merical results confirm Gaster’s theory (22) and (23) for
small amplification rates k, -0, but not for general values of
k,.

Equation (21) was also used by various authors'”® to
estimate the spray angle. It was assumed that the spray angle
can be estimated by the ratio of the disturbance amplitude
increase to the distance traveled by the fluid particle in the
same time period . It then follows from (13) and (21) that
to first-order approximation, the tangent of the spray angle 8
is

ang = 4@ 7
dr Uyt
_ 2 W@d/dn) exp(Qn)), o _ 4np (SK}).,

M " M A

: (25)
where 47/M is the dimensionless v -ve amplit- e remaining
arbitrary within the framew* f linear theory and
(Sk?),./A isthemaximumic . -:amplification rate ob-
tained by Taylor."® The abov2 a. guiinent (25) assumed that
the disturbance travels with ise jet v-  ty and that the ab-
solute instability and convec*ive ins. ity are simply relat-
ed by the Gaster'® theorem. The first assumption is valid
only when p € 1. Since the second assumption is valid only
for a spatially homogeneous system near k, = 0, it results in
a less realistic modeling of a jet breakup. Note that Sin (25)
is independent of y. The spatially growing disturbance the-
ory does not require these assumptions. The tangent of the
spray angle in our coordinate system is simply

2003 Phys Fluids, Vol. 30, No. 7, July 1987

tanf= — g(envelope of d) = Cok, exp( — k,p).
Y

For small k,, we have approximately
tanfB=Cok (1 —ky+ ). (26)

Hence, unless Cok, is sufficiently large, a discernable 8 may
not appear until some distance downstream in the — ydirec-
tion. This may be the origin of the so-called intact length
over which the jet does not appear to diverge.

1. RESULTS

The relation between the spatial amplification rate and
the wavelength is shown in Fig. 2 for the case of 42 = 100
and three different values of p. If the gas is air at room tem-
perature, then for most liquids P = 800p? atm. Therefore,
the approximate pressure of the three curves in Fig. 2 are 1,
10, and 200 atm. It is seen that waves of length shorter than
the capillary length 0/p,U2 are stable (k, <0); otherwise,
they are unstable. Moreover, there is a prominent maximum
amplification rate for each p at a *“resonant” frequency with
a critical wavelength of the same order as the capillary
length. As p is increased, both the amplification rate and the
critical wavelength are increased, signifying the increased
inertial effect of air on the unstable capillary waves. The
amplification curves for other values of 4 and p behave simi-
larly.

The numerical results of the spatial amplification rate
for A2 = 100 and p? = 0.24 are given in Table 1. The corre-
sponding results for the temporal case are given in Table II,
where the calculation is based on Taylor's characteristic
equation obtained in a frame moving with the wind speed.
However, w, (T) was not assumed to be negligible com-
pared with w, (7). It is seen from Table Il that w, (T) is
indeed not negligible for this particular relatively large value
of p* = 0.24. For much smaller values of p, of order 0.01, our
numerical results (which are not presented) showed that
Taylor's'* assumption was correct. The air pressure corre-
sponding to this density ratio for most liquids is approxi-
mately 10 atm at room temperature. It is easily verified from

FIG. 2. Vanation of growth rate with wavenumber; 4 = 100.
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TABLE L. Spatial growth rate; 4 * = 100, p* = 0.24.

k, k, w,

0 0 0
0.05 0.023 57 0.998 57
0.10 0.045 18 1.95328
0.20 0.081 65 3.736 80
0.30 0.107 48 5.371 11
0.40 0.120 06 6.898 35
0.44 0.120 62 7.496 29
043 0.12075 7.346 76
0.42 0.120 69 7.197 39
0.45 0.120 32 7.646 12
0.50 0.11585 8.406 41
0.60 0.098 72 10.101 90
0.70 0.051 43 12.393 42
0.80 0.023 15 15.203 56
0.90 0.005 04 18.099 00
10 0.0 20.412 41
1.1 - 0.005 89 23.407 14
1.2 —0.011 69 26.391 07

Tables I and 11 that the Gaster theorem (22) and (23) to-
gether with (24), is indeed valid for smaller values of k,.
However, for the values of &, near the maximum value, the
agreement is not as good as expected since the Gaster
theorem is intended for k, =0. The disagreement becomes
worse as p is further increased. Note that the wave frequen-
cies in Table II are all negative, but they are all positive in
Table 1. Since the phase of the waves is given by i(ky + @, 7),
the spatially growing waves travel downstream in a fixed
frame and the temporally growing disturbances propagate
upstream in a frame moving with the jet. However, these two
waves have the same wave speed w,/k, given by (22) and
(24) in the inertial frame for those waves having k, 0. This
can be easily verified using the data in Tables I and I1. Figure
3 shows that the spatial amplification rate increases with A4
for a given value of p? = 0.012.

In order to compare the spray angle predicted by (26)
with eaperiments, we plot k, /p against A - in Fig. 4. Note that
k; is a function of p and 4. Some of the spray angles mea-
sured by Reitz and Bracco' with their number I1X nozzle are
given in Fig. 4 and Table III together with other relevant

TABLE I1. Temporal growth rate; 42 = 100, p? = 0.24.

k! 250k 2/4 we(D
5.848 16 0.057 30 — 1107224
462384 0.068 74 - 862971
293428 0.09104 — 521004
2465 30 0.096 73 - 422662
223597 0.097 98 —372915
201183 0.096 83 -322202
1.902 28 0.094 77 —2.961 50
1.689 32 0.085 83 - 241080
1.482 89 0.066 83 - 176242
132974 0.044 33 ~1.14328
1221 69 0.026 26 —0.647 46
1154 17 0.01471 —0.34078
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FIG. 3. Variation of growth rate with wavenumber; p’ = 0.012.

data. The numbers in the first column of Table III are the
test series numbers used by Reitz and Bracco. The corre-
sponding values of p, A; the intact length x, divided by the jet
diameter d,; and tan £ are calculated from Reitz and Brac-
co's Table I.' For each set of p and A4, the maximum values of
k, and the corresponding values of k, are numerically deter-
mined from the solution of (18) and (19). The characteris-
tic length a for each test is also given in Table III. These
values are given in the last four columns. Note that the dif-
ferent values of the charactenistic length a in Table 11 are all,
indeed, several orders smaller than the nozzle diameter
d, = 0.034 cm. Therefore, the asymptotic analysis for
Kd,— o used here is relevant. The curve of the spray angle
against A 2 obtained from the temporal theory is also given in
Fig. 4 for comparison. Note that the spatial theory predicts
larger spray angles than that predicted by the temporal the-
ory when 4 25100, but the converse is true when 4 ><100.
Note that this curve becomes almost horizontal when
A25100. However, it descends almost parabolically to
k,/p = 0 near A4 ?~0. This shows that the spray angie in-
creases as constant Xp at large values of A4, but as
k,~Ap = o/p,v,U, for A smaller than 10. The theoretical

1.2
s
1.04
ost & L a
Iy
0.6t
s
Iy
0.4
° ¢ o [
¥ 0 % * s . v *
0.2%
[
°-° -4 4 3 4 b 4 4
0 ) 100 180 , AW 260 300 360 a0

FIG. 4 Variation of spray angles with 4 * and p; A, experiments o~ ' tan 5.
¢, spatial theory p~ 'k,; ®, temporal theory (Sk,),./4 .
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TABLE I11. Experimental and theoretical data.

Series p°x10° A2 tan g x,/d, Co a,x10cm k, k.. w, ax10'cm
2 1.3 k¥ 0.0393 20 3.29 15.2 0.011 94 0.60 305.134 66 4628
23 13 314 0.0175 20.0 1.47 6.3 0011 88 0.59 289.633 21 4.309
2¢ 1.7 168 0.0612 15.0 2.26 5.2 0.027 13 0.56 82.180 53 2.308
25 . 8.6 367 0.0743 1.5 2.40 1.2 0.030 75 0.59 120.959 15 5.036
26 12.9 61 0.0892 0.2 2.93 2.5 0.030 45 0.50 34.036 25 8.393
28 17.2 98 0.1051 0 2.19 0 0.037 66 0.52 38.710 45 1.350
30 25.8 30 0.1317 0 3.54 [¢] 0.037 16 0.43 14.389 34 0410
M 204 2.2x10°¢ 0 >40 V] 0 0.000 97 0.07 0.007 26 0.613
35 51.5 8.5 0.1228 0 333 0 0.036 84 0.303 59 3.769 27 0117

curve in Fig. 3 was obtained with C, = 1. The predicted
spray angles are uniformly smaller than the experimental
values. If we wish to bring up the calculated spray angle to
agree with the measured ones, we may use the values C;,
given in Table I11. This amounts to assigning different values
for the height of the first wave rest at the nozzle exit. Al-
though the dimensional wave amplitude Coa of these initial
waves are all smaller than 10~ cm, which is two orders of
magnitude smaller than the nozzle diameter d, = 0.034 cm,
and different initial wave ar.plitudes Cya for the same nozzle
may be actually encountered in experiments, we are actually
not éntitled to speak of any finite wave amplitude in the
linear theory. Thus although the practice of adjusting the
value of C, for the best fit with experiments may be physical-
ly reasonable, it remains problematic.The matter can be set-
tled only by use of nonlinear theory.

When the viscosity of the jet liquid is increased with all
other physical quantities fixed, A decreases. It follows from
the results in Fig. 4 that the amplification rate and the spray
angle decrease as the viscosity is increased. The effect is very
dramatic when A is very small. The series number 34 test in
Table I11 is a case in point. In this test the liquid is glycerol.
Because of its high viscosity the amplification rate k, is only

< 0.000 97. It follows from (14) that even if the largest initial
amplitude of C, = 3.54 in Table III is used, the distance
required to ampiiiy the spray angle to a mere 1°is

y=10022.9.
The dimensional distance is therefore
ya=0.6144 cm,

which is 18 diam of the nozzle. This length is of the same
order of magnitude as the intact length of 40 diam reported
by Reitz and Bracco.' Recal! that the jet was predicted to be
unstable if it is subjected to disturbances of all wavelength,
including those shorter than a. It appears that the intact
portion of jet is actually also unstable, but the amplification
rate of the disturbance is so small that the spray angle has not
yet been amplified to the observable value. This view can be
further supported by the observation that capillary waves
are usually observed in the intact portion of the jet. These
waves seem to be the unstable infinitesimal waves which are
amplified to small finite amplitudes. These finite amplitude
waves owe their existence to nonlinear stability, which is
possible because of the small amplification rate. The nonlin-
ear stability will reduce the spray angle predicted by linear
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theory and lengthen the intact portion of jets. Thus the linear
theory probably will give a better prediction of the spray
angle when nonlinear stability is absent. Note that the jets
start to diverge to the extent consistent with the measured
vajues given in Table III only when the initial amplitudes are
increased to the values Coo. Nonlinear stability is usually not
attainable when the disturbance amplitude exceeds a thresh-
old amplitude. Thus Cya can be identified as the threshold
amplitude g,. It appears that in order for the atomization to
start right at the nozzle exit, the disturbance amplitude must
exceed g, there. The a, are listed in Table 11 for each test
series. It cannot be overemphasized that the above argu-
ments on nonlinear effects remain conjectural until a full
nonlinear analysis is carried out to confirm them. These ar-
guments are offered here merely as targets for future nonlin-
ear analysis.

V. DISCUSSION

Taylor's'® major results are as follows. A high speed jet
is unstable with respect to temporally growing disturbance
of wavelength longer than the capillary length o/p,U3.
There exists at a specific wavelength a maximum growth rate
among unstable disturbances for any given 4 and p € 1. The
growth rate increases as 4 is increased with fixed p< 1. The
droplet size corresponding to the maximum growth rate de-
creases inversely as the square of the jet velocity. These find-
ings were based on linear stability analysis of temporally
growing disturbances in a gas of low density such thatp <.
The present analysis of spatially growing disturbances for
arbitrary values of p led to the same conclusion on the quali-
tative effects of the various physical factors mentioned
above. Significant quantitative differences on the maximum
growth rate were found when p exceeds 0.01 for 4 in the
range of 10-1000. This value of p corresponds to air pressure
of approximately 10 atm for most liquids at room tempera-
ture. The present theory predicts that the maximum growth
rate increases and peaks sharply about a given wavelength as
pisincreased with 4 fixed. The practicalimplication is that a
larger gas-to-liquid density ratio may be more favorable for
atomizing a liquid jet into a narrower size distribution about
the most popular drop size corresponding to the maximum
growth rate. Numerical results reveal that the maximum
growth rates for a wide range of p and 4 all occur at a dimen-
sionless wavelength of order 1, with little deviation. The
length was normalized with the capillary length o/p,U3}.
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Hence, finer droplets may be produced by use of smaller
surface tension with given p, and U,. While the temporal
theory yields a constant spray angle independent of the axial
location, the spatial theory gives a spray angle which varies
along the jet axis. Moreover, the former theory predicts that
the spray angles increases with p when 4 exceeds 1, but the
latter theory does not give the same dependence on the den-
sity ratio until 4 ? exceeds 100. This can be seen easily from
Fig. 4. When 4 %¢]|, both theories give 8 = Bo/p,v,U,.
However, the constant of proportionality B is much larger
for the temporal case. The present theory showed that £ also
depends on the inital wave amplitude Cya. A large value of
Coa will give a better head start for the development of the
spray angle, which increases in the direction of the jet flow
- according to (26). Thus if a nozzle is so designed that the
initial wave amplitude is exceedingly small and if the atom-
ization takes place at a very small 4 (which may occur, for
example, when the viscosity is exceedingly large), then a
measurable spray angle may not be observed until a finite
intact length is exceeded.

It was assumed that the viscosity of the gas phase is of
secondary importance in jet atomization. This assumption
must be evaluated. The viscosity of the gas and the high
speed of the jet result in the formation of a thin bondary layer
at the interface. The boundary layer may become unstable
and generate shear waves'® (Tollmein-Schlicting waves).
The shear waves may extract kinetic energy from the main
flow and amplify. Thus in addition to the air pressure fluctu-
ation, the shear waves may cause the onset of atomization.
The size of droplets caused by shear waves may be estimated
with the critical shear wavelength at the onset of the bound-
ary layer instability. Assume that the velocity distribution in
the gas boundary layer flow is given by the Blasius'® profile.
Then the critical Reynolds number and the critical wave-
length are given, respectively, by'’

R =Ub/v, =400, A, = (27/0.3)(6/0.32),
where § is the momentum thickness.'® Using the maximum
Jet velocity of U, = 1.11 X 10* cm/sec which occurs in test
23 in Table 111, and using the air kinematic viscosity of 0.15
cm?/sec at room temperature, we find from the definition of
the critical Reynolds number,

8§=55x10"*cm.

It follows from the expression of A, that

A, =35%x10""cm.
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This length is at least two orders of magnitude larger than
the capillary length. On the other hand, most of the droplets
from atomizing jets possess diameters smaller than or com-
parable to the capillary length.”* It appears that the viscosity
effect of the gas is of secondary importance in an atomizing
jet.

Without having rigorously analyzed the effects of gas
viscosity and the finite amplitude nonlinear effects, we can
offer only the following tentative statement concerning the
mechanism of jet atomization. The onset of atomization is
due to the pressure fluctuation which causes the resonant
oscillation of capillary waves at the liquid—gas interface. The
initial disturbance amplitude at the nozzle exit must be larg-
er than a threshold amplitude for the atomization to take
place immediately at the nozzle exit. Otherwise, atomization
will occur only downstream of a finite intact length. Atom-
ization may also be caused by shear waves, which tend to
produce droplets of size several orders larger than the capil-
lary length.
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APPENDIX B

Absolute instability of a liquid jet in a gas
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The effect of the ambient gas density on the onset of absolute instability in a viscous liquid jet is
examined. The critical Weber number, above which the instability is convective and below

which the instability is absolute, is determined as a function of Reynolds number and the

- density ratio of gas to liquid. It is shown that the gas density has the effect of raising the
critical Weber number. It also raises the cutoff wavenumber below which disturbances are

spatially amplified and above which they are damped.

1. INTRODUCTION

The capillary instability of an infinitely Jong jet with
respect to temporally growing disturbances was analyzed by
Rayleigh.' Keller’ et al. examined the capillary instability of
a semi-infinite jet with respect to spatially growing distur-
bances. They found that the temporal and spatial distur-
bances are analytically related if the Weber number is suffi-
ciently large. For sufficiently small Weber numbers, Leib
and Goldstein® found that the state of convective instability
obtained by Keller er al. actually cannot be reached by a
given initial disturbance in the sense of Briggs* and Bers.®
Leib and Goldstein demonstrated, for the first time, the exis-
tence of the absolute instability in an inviscid jet. Recently,
they® determined from Chandrasekhar’s’ dispersion equa-
tion the critical Weber number below which a viscous jet is
absolutely unstable as a function of Reynolds number. They
also found that the cutoff wavenumber, above which the dis-
turbance is spatially damped, is one independent of the We-
ber number.

Here, we examine the effect of the ambient gas density
on the absolute instability discovered by Leib and Goldstein.
It is shown that the gas density has the effect of enlarging the
domain of absolute instability in the Reynolds-Weber num-
ber space. Moreover, it raises the cutoff wavenumber below
which the jet is convectively unstable, and also raises the
amplification rate of the spatially growing disturbances
when the absolute instability is absent.

1. FORMULATION

Consider a circular cylindrical jet of an incompressible
viscous Newtonian liquid issued from a nozzle into an un-
bounded inviscid gas. The governing dynamic equations of
motion in the liquid and the gas phases are, respectively, the
Navier-Stokes and Euler equations. The boundary condi-
tions are the vanishing of the net force per unit area of the
interface, and the equality of radial fluid velocity in each
phase with the total time rate of change of the interfacial
position. A uniform velocity distribution U in a circular jet
of radius 7, in a quiescent gas is an exact solution to this set of
differential equations in the absence of gravity. This exact
mathematical solution representing a possible basic state is
physically unstable. The stability analysis of this basic state
with respect to any Fourier component of the disturbances
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of the form C, exp(wr + iky) led to the characteristic equa-
tion (1) when viewed in a reference frame with its origin
fixed at the nozzle exit,*’

(@ ik + 2K (lz(k) 24 l.(k)li(/l))
R \Ijk) A*+k? Ik, (A)
. A= k? Ky(k)I,(k)
X — ik + 283 0 !
(=) + o T kT KoL k)
! AT k? I,(k)
——k(1 -k} =2 o, 1
B )42+k21°(k) th

where G, is the wave amplitude, w is the complex wave fre-
quency (the real part of which gives the exponential tempo-
ral growth rate, and imaginary part of which gives the wave
frequency of disturbances), k is the complex wavenumber
[the real part of which is equal to 27r,/(wavelength) and
the imaginary part of which gives the spatial amplification
rate], 7 is time normalized with r,/U, y is the axial distance
measured in the unit of r, in the opposite direction of the jet
flow, I and K are, respectively, the modified Bessel func-
tions of the first and second kind, their subscripts denote the
order of the functions, and A is defined by

A=k 4+ R(w - ik).

The three independent flow parameters in (1) are Reynolds
number R, Weber number 5, and the density ratio @ defined,
respectively, by

R=Uryv,, B=p, U0, Q=pi/p.
where v is kinematic viscosity, p is density, o is surface ten-
sion, and the subscripts 1 and 2 denote, respectively, the
liquid and gas phases. Note that the above nondimensionali-

zation of time implies that the dimensional frequency is giv-
en by oU/r,.

iit. RESULTS

Figure 1 shows the loci of the two characteristic roots
obtained when a given set of flow parameters as the temporal
growth rate w, varies for a number of values of the wave
frequency w,. As the w, is reduced from a finite positive
value to zero, these loci approach toward two different
branches of amplification curves w, = 0 for the spatially
growing disturbances. Note that k, >0 gives the spatial
instability because the y axis is chosen to be negative in the
flow direction. It can be seen that two of the loci with
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0.74 <w, <0.75 will intersect in the upper half-plane at a
" saddle point.® A similar situation has already been shown by
Leib and Goldstein® for the case of negligible gas density. As
the Weber number is increased, with the values of Q and R
given in Fig. 1 being fixed, this saddle point moves closer to
the pure spatial amplification curve for disturbances with a
“group velocity” in the direction of jet fiow. Note that the
.amplification curve, which does not originate from k, = 0, is
for the disturbances with upstream propagating *‘group ve-
locity.” Following Leib and Goldstein, the minimum value
of B for which the saddle point of Eq. (1) lies in the upper
_half-plane is defined as the critical Weber number. Figure 2

gives the dependence of the critical Weber number on R for
three values of Q. Here, Q = 0.0013 corresponds to the air to
water density ratio in one atmospheric pressure in room tem-
perature. The curve Q = 0 was obtained by Leib and Gold-
stein. In the parameter range below the curves, the jet is
absolutely unstable. The dashed line indicates the inviscid
limit obtained by Leib and Goldstein for the case of Q = 0. It
is seen that the gas density has the effect of enlarging the
domain of absolute instability for the 5-R plane.

Above these curves, the jet is convectively unstable. Fig-
ures 3 and 4 give a few typical amplification curves for con-
vectively unstable disturbances. Leib and Goldstein showed
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FI1G. 2. The critical Weber number ver-
sus Reynolds number.
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FIG. 3. The growth rate for convec-
tively unstable disturbances:
R = 20000, 8 = 400.

that the cutoff wavenumber, above which the disturbance is
damped, is one independent of B for the case of @ = 0. It is
seen from Figs. 3 and 4 that the gas density tends to raise the
cutoff wavenumber very significantly. This has a practical
significance of producing smaller droplets by use of larger
ambient gas density.’

It is very hard to resist the temptation of speculating
that the absolute instability may correspond to the dripping
mode of the jet instability. When a saddle point of the eigen-
value exists at a certain frequency and there exist both up-
stream and downstream propagating convectively unstable
branches, a disturbance with this certain frequency may be
alternatively attracted toward these two branches as time

evolves. The simultaneous spatial and temporal growth al-
ternating in the upstream and downstream directions with a
regular frequency casually observed in a dripping jet seems
to correspond to the mathematical picture of absolute insta-
bility. This speculation is even more tempting when one real-
izes that the absolute instability is predicted only for a small
Weber number, which is the ratio of the inertial force to the
surface tension force. However, the argument remains spec-
ulative, since the dripping phenomenon involves a highly
nonlinear finite amplitude of disturbances that cannot be
accounted for in the present linear theory. However, Leib
and Goldstein® suggested that the absolutely unstable distur-
bance may grow nonlinearly by the mechanism of direct res-

Q = 0.0013, A = 100

Q = 0.0013, 2 = 200

100« k;

FIG. 4. The growth rate for convec-
tively  unstable  disturbances,

R=345
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onance advanced by Akylas and Benney.'® The physical sig-
nificance of the absolute instability in the context of
nonlinear theories remains to be explored.
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APPENDIX C

Breakup of a Swirling Liquid Jet

D. J. Kang and S. P. Lin
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ABSTRACT

The phenomenon of breakup of a liquid jet is of fundamental concern in vari-
ous industrial processes, including atomization, jet cutting, and ink jet printing.
The breakup is due to flow instability in the jet and the ambient gas. Lin and
Kang [5] recently showed that the fundamental mechanism of atomization is the
resonation of capillary waves by the pressure fluctuation in the flows of liquid
and gas. Their conclusion was based on the stability analysis of a liquid jet with
respect to spatially growing axisymmetric disturbances. Their work is here ex-
tended to include the nonaxisymmetric disturbances and the effect of swirl fre-
quently encountered in practice. The stability of an inviscid jet issued into an
unbounded ambient gas with respect to spatially growing disturbances is ana-
lyzed. The numerical results demonstrate that the breakup process may be en-
hanced by use of a larger gas-to-liquid density ratio and/or a larger swirl im-
parted on the jet. This enhancement is at the expense of a broader size
distribution of the droplcts. On the other hand, suppression of swirl and smaller
gas-to-liquid density ratio produce longer intact lengths of the jets, which is de-
sirable in the applications of jet cutting and ink printing. A smaller ratio of iner-
tial force to surface tension force is shown to favor smaller droplets. The present
findings, together with those found previously by the authors, are offered as a
partial guide for a rational design of the processes involving jet breakup phe-
nomena.

INTRODUCTION

The phenomenon of disintegration of a liquid jet is relevant to the pro-
cesses encountered in ink jet printing, atomization, and other industrial
practices. The possibility of refining the jet breakup process for produc-

Copyright © 1989 by Gulf Publishing Company ISSN 0893-3960/89/$2.00
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ing monodispersive ceramic particles is currently being explored. While
the ink jet may breakup into droplets of size crmparable to the jet diame-
ter at low jet speeds, an atomization jet usually produces droplets of sizes
much smaller than their diameter at relatively high speed. Atomization
processes have been used widely in liquid fuel injection, spray coating,
pesticide application, and aerosol generation. A concise review of the
works related to atomization was given by Reitz and Bracco [10]. The
works on the jet breakup at low speed are reviewed by many authors,
including Bogy [1].and McCarthy and Molloy [7].

The classical work of Rayleigh on the breakup of a liquid jet is well
known. He studied the stability of an inviscid jet issued into a vacuum
with respect to temporally growing disturbances. Keller et al. {2] pointed
out that the observed disturbances in a liquid jet actually grow spatially
rather than temporally everywhere at the same rate. In particular, the dis-
turbance at the.nozzle exit is incapable of growing due to the no-slip con-
dition. They found that the spatially growing disturbances in an inviscid
jet injecting into vacuum behave differently from the temporal ones only
when the jet speed is sufficiently low. They found that the jet is more
unstable with respect to axisymmetric disturbances than to nonaxisym-
metric ones. Taylor {11] investigated the formation of temporally grow-
ing ripples at the interface between a viscous jet of infinitely large radius
and an inviscid gas of small density. His work was recently extended by
Lin and Kang [5], who investigated the spatially growing disturbances in
a viscous jet emanating from a nozzle into an inviscid dense gas. They
obtained numerical results only for the limiting case of infinitely large
radius. As a consequence, they could treat only axisymmetric distur-
bances. Their results differ significantly from that of Taylor’s when the
gas-to-liquid density ratio is large. Their theory allows them to give a
better explanation of the spray anglc and the existence of intact lengths.
They compared their theoretical results with the experimental results of
Reitz and Bracco, and came to the conclusion that the basic cause of
atomization is the pressure fluctuation at the liquid-air interface which
resonates the capillary waves. The viscous force plays only a secondary
role in comparison with the incrtial force associated with the gas-to-lig-
uid density ratio. Because of this we will, in this work, neglect the vis-
cosities, but take up the effects of the disturbance nonaxisymmetry and
the inertial force associated with the swirl often encountered in practice.
This same problem was considered by Ponstein [9] except he treated the
disturbances as temporally growing. The significant difference between
the temporal and spatial disturbances has already been demonstrated by
Keller et al. [2], Lin [3], and Lin and Kang [S]. The findings in the pres-
ent work arc offcred as a partial guide for a rational design of relevant
industrial processes and devices.
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STABILITY ANALYSIS

Consider an inviscid liquid jet issued into an unbounded inviscid gas,

as shown in Figure 1. The governing equations of motion of the fluids
are:

pidYi+ V- gV) = - gP,

g-Vi=0 (=12 (1)

where i = 1 denotes the liquid and i = 2 denotes the gas

YV = velocity

y = gradient operator
p = density

t = time

P = prescure

49
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The boundary conditions at the interface r = 5 [6] are the kinematic con-
dition:

Vie=0m+Vi-yn . Q)
and the dynamic boundary condition:

P]ﬂ—Png:Ul'_\(l/Rl + I/Rz) Q3)
where n = a unit normal vector pointing into the liquid

subscripts r and z = r- and z-components of the velocity in the
cylindrical coordinate system
o = constant surface tension
R, and R, = principal radii of the interface

R, and R, are positive if measured from the center of curvature in the
direction of n.’
There exists a basic state:

Vi=i,We+iol'/n), V=0, n=a

P-P.=(T2)a2-r?)+o0/a @)
where 1= a unit vector
subscripts 8 and z = the directions in the cylindrical coordinates
(r.6,2)

I" = constant circulation
a = radius of the jet
P, = constant pressure in the ambient gas

It is easily verified that Equation 4 satisfics Equation I and its boundary
conditions (Equations 2 and 3) with R, = a and R, — o. Hence the basic
state Equation 4 rcpresents an axisymmetric cylindrical jet of radius a
swirling with the tangential velocity I'/r and injecting at a constant speed
W, into an unbounded quiescent gas of constant pressure P,.

To investigate the manner in which this basic state becomes unstable,
we perturb the flow with disturbances:

V.=V, +V/,P=P+P’, n=a+¢ ©)

Substituting Equation 5 into Equation 1, canceling out the basic state
part, neglecting the nonlinear terms, and expressing the resulting equa-
tions in terms of the dimensionless variables:
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(xiovad) = (r,oa.l. {)/ao T= ‘/(a/wo)

vi* = (Ut vt wt) = (V' V', Vo')W,

p*=PIp W

we have:
3,¥.* +8,[0,v.* + (v/x1)dgv.*) 5 (o\/p)up* 6)
v v*=0 )

where 6, = Kronecker delta function
v = (I'/aW,) = swirl :umber

In order to obtain the corresponding linearized boundary conditions,
we need explicit expressions of p and the mean curvature K = (1/
Ry) + (1/R;). These can be obtained from the equation cf free surface:

f=r—n6,z2,)=0

© ah.

p= —vyf/iefl
K=-y¢-°n

It follows that:

-p=(l, —na, =)

K=a"'~a-alny—1, ®)

In arriving at Equation 8, we expanded r about a in the Taylor series
and neglected all nonlinear terms of n and its derivatives. Substituting
Equation 8 into Equations 2 and 3, subtracting out the basic state, and

expressing the resulting lincarized boundary conditions in terms of the
dimensionless variables, we have, at x = |:

u* =94+ 5(3,d + v3,d) ()
Pud +p* = p2* = — (o/p\W,2a)(1 + 3y + 3,,)d (10)
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where p, = P,/p,W,2, and thus p,, = 4?. The first term in Equation 10
arises from the Taylor scrics cxpansion about x = 1 of the liquid pressure
in the basic siate.

The normal mode solution of Equations 6 and 7 with the boundary con-
ditions of Equations 9 and 10 can be written as:

Cux | Tu]
v,* v,(x)
w* | =] w(x) - expli(ky + nf ~ wr)) an
p* pi(x)

I L

where k = wave number in the y-direction
n = wave number in the §-direction
w = wave frequency

For temporally growing disturbances, k is real but w is complex. If the
imaginary part of w is positive, then the disturbance will grow exponen-
tially with time everywhere in space at the same rate. Therefore, treating
the disturbances in a liquid jet emanating from a nozzle as temporally
growing is not totally realistic, since the disturbance at the nozzle exit
never grows due to the no-slip condition. Fence, we model the distur-
bance as a spatially growing disturbance for which k =k, + ik, is cou-
plex but w is real. It is seen from Equation 11 that if the imaginary part of
k is negative, the disturbance will grow in the positive y-direction, i.e.,
in the direction of the jet flow. Substituting Equation 11 into Equation 6,
and eliminating the pressurc terms between the x- and #-components and
between the 6- and y-components of the resulting equations, we have,
respectively:

v,=nw/kx and u,= —i(xv,))’/n (12)
where primes denote differentiation with x.

Substituting Equation 11 with the expressions of u, and v, in terms of w;
g.ven by Equation 12, into Equation 7, we have:

w2+ w ' /x - (k+m?/x)w, =0 (13)
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which is the modified Bessel equation of order n. The solution of Equa-
tion 13 is:

where 1, and K, are the modificd Bessel functions of order n of the first
and second kind, respectively, and A, and B, arc constants to be deter-
mined from the boundary conditions. It follows from Equation 12 that:
v, = ([AL(kx) + BK,(x]
u, = — (i’k)[Al,’ (kx) + BK, ' (kx)] (15)

The corresponding pressure disturbance amnlitudes can be found from
the y-component of Equation 6 with the aid of Equation 11 as:

P = (p/p)(w = 8iny/x? = §K)[Al(kx) + BK,(kx)}/k (16)

The interfacial displacement amplitude & can be obtained from Equations
9, 11, and 15:

6 =[Al,"(k) + BK, (K))/[w = &,(k + ny)] a7
For the boundness of the obtained solutions, we must demand:

A;=B, =0
It follows from Equation 17 that:

Al (k) (w=k—-ny)-B)K, (k)w=0 . (18)

The remainine boundary condition to be satisfied is the dynamic one,
i.e., Equation 10, which demands:

{k(1 - n? — k¥ 4+ B (kK)/(w — k — ny)
+ B(w — k = ny)I(k)}A, — p BwK,(k)B, =0 (19)

where p= PZIPI
' B = p\W,alo

Equations 18 and 19 constitute a system of homogeneous equations in
two unknowns A, and B,. This system has a nontrivial solution only if the
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dcterminant of its coefficient mairix vanishes. This requirement yiclds
the characteristic equation:

(w — ny — k)* + Bowia, + k|(n? — 1 + k})/8 — v¥la; = 0 (20)

where a; = = I,"(K)K.(k)/1(K)K,’ (k)
a; = —I,"(k)/1(k)

For the case of a jet without swirl emanated into vacuum, we have
p =+ =0, and Equation 20 reduces to:

(w — K)? = (k/B)(n? + k2 = DI,* (k)/1,(k)

which is the result of Rayleigh modified by Keller et al. [2). Equation 20
corresponds to (2.31) of Ponstein [9] when his basic state gas velocity is
neglected. Here' we consider the spatially growing disturbances, rather
than the temporally growing disturbances considered by Ponstein.

Before solving Equation 20 numerically for the complex k for various
given values of p, 8, v, n, and w, we obtain the asymptotic values of k, in
the limits of k, — 0 and k, — oo. By use of the scries representations of
I.(k) and K,(k) near k = 0, it can be shown that in this limit, Equation 20
reduces to:

ak’+bk+c¢c=0 . @n
where a=n(l —2n - 3n?) + nB(2n + 2 + v?) + Bpu?
b= —4n(n+ I} (w —ny)8
¢ =2n(n + N[B(w — ny)* = n(n? = 1 = B+?) + pfu?)
Hence:
k=[-btb?—4ac)2a
It follows that at k, = 0, b = 0, which requires:
w = ny
Moreover, at k. =0, k, is given by, if it exists:
k, = +(c/a)'”?

The negative root gives rise to spatial instability. Note thatk, =0, k, =0
is a solution for all p, B, and v, when n = 0. The eigen-frequency corre-
sponding to k, = k, = 0 is zero. As n — oo, both the denominator and the
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numerator, excluding the term Bpw?, are negative. It follows that the gas
density is destabilizing for highly nonaxisymmetric disturbances as n —
oo. Similarly, by use of the asymptotic expansions of I,(k) and K,(k) for
large k, we reduce Equation 20 to:

K-8+ Ak-8C=0 2)

where A=28(w—ny)+nl—1-8
C = (w - ny)?* + pu?

The three roots of Equation 22 are given by:
ki = (8/3) + M'? + NI

k; = (8/3) + mM'? 4+ m3N!3

k; = (8/3) + m*M'? + mN' (23)
where M= —g/2 + Q'?
N=-q/2-Q!?
Q=q2 +p¥27
p=A-813

q = AB/3 - 26%27 - BC
m=(-1+iy3)/2

Note that when Q > O, k; is real, and k; and k, are complex conjugates.
It is seen from Equation 23 that k, — oo only when w — . Moreover,
whenk, — oo, sodoes |k,|. Hence, the extremely short waves are highly
unstable. However, this physically unrealistic situation is probably due to
the neglect of the viscosity. The damping effect of viscosity, especially on
the short nonaxisymmetric wave in a swirling jet, will be investigated in
the near future. These asymptotic results are used to guide the numerical
solutions of Equation 20.

The complex k has been obtained from Equation 20 for various sets of
given 8, v, n, p, and w. The numerical method used is Muller’s method
[8]. It should be pointed out that there are many roots of Equation 20.
Only the negative roots of k, which give rise to instability are reported in
the next section.

Before presenting the results, we mention that the amplification rate is
related to the spray angle ¢ by tan ¢ = (d/dy)(envelope of d) = — &k,
exp( — kiy), where & is the amplitude of the first wave at the nozzle exit.
& remains an arbitrary constant within the framework of linear theory.
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Unless — 8k; is sufficiently large, for unstable disturbances with k; < 0,
a discernible ¢ may not appear until some distance downstream in the y-
direction. This is the origin of the so-called intact length over which the
jet does not appear to diverge. However, within the intact length, small-
amplitude periodic waves may be observable, since they are after all the
unstable disturbances, although their growth rate happens to be small.

RESULTS

The amplification rates of the axisymmetric and the first three nodes of
nonaxisymmetric disturbances are plotted against the wave number in
Figure 2, for 8 =400, 84% = 15. and p = 0. It is seen that the jet is actu-
ally more unstable with respect to nonaxisymmetric disturbances than to
the axisymmetric ones. However, the maximum amplification rates of the
nonaxisymmetric modes corresponding to n =2 and 3 both occur at
k, = 0. Thus these modes of disturbances cannot be observed at their
maximum amplification rates in a short jet, since their wave lengths are
infinitely long. The mode with n =1 represents a circular jet flagging
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Figure 2. Amplification rates of non-axisymmelric disturbances, £ = 400,
B/ =15 p=0.
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sinuously in the axial direction. Its maximum amplification rate is
slightly larger than that of the axisymmetric disturbance with n = 0, and
the corresponding wave length of the former is slightly longer than that
of the latter. Note that only the amplification rate curve corresponding to
n = 0, but not those with n # 0, passes through the origin. This is consis-
tent with the asymptotic analysis for k, — 0 given in the previous section.
Each curve intersects with the k,-axis at a finite critical value k,., below
which each particular mode is unstable. Above this k., k; remains zero
until a second k, critical value, depending on the flow parameters, above
which each particular mode becomes once again unstable (k; < 0). In the
limit of k, — o0, k; ~ — oo as was predicted by the asymptotic analysis
for k, — oo. The portions of the curves for large values of k, are not
given in the figure, since the disturbance will be strongly damped by the
neglected viscosity when k, is very large. The observable droplet sizes
will probably correspond to the wave lengths near the maximum amplifi-
cation rates of various modes. The behavior of the disturbance with large
"k, will be further elucidated shortly. It is seen from Figure 1 that axisym-
metric and nonaxisymmetric disturbances of different wave lengths may
amplify at the same rates in practice. The smallest obtainable droplets are
limited by the value of k,., which decreases as n is increased. Thus, one
may expect to see a wider size distribution of droplets caused by axisym-
metric disturbances than the nonaxisymmetric ones. Similar dependence
of k; on n was found for other values of p, 8, and . For smaller values of
B and/or larger values of v, the maximum growth rates generally in-
crease. It should be pointed out that a similar situation was found by Pon-
stein for the temporally growing disturbances. However, his results are
independent of the value of 8. Hence there are not only quantitative but
also qualitative differences between the two fundamentally different
types of disturbances.

Figure 3 shows the effects of the ambient gas density on the instability
with respect to the axisymmetric disturbances in a liquid jet with
B = 400, B+* = 15, and n = 0. Both the maximum amplification rate and
the range of unstable wave numbers increase as p increases. Thus the
atomization rate can be increased by increasing the gas to liquid density
ratio, but at the expense of having to accept a wider size distribution. The
same trend was also found for jets without swirl, as shown in Table 1.
Figure 4 shows that the swirl has the same effect as the gas to liquid den-
sity ratio, except that its effect is more pronounced.

Figure § gives amplification curves for various values of 8 for a jet
with Bv* = 15, n = p = 0. For B less than a value of approximately 16,
the curves do not possess the critical wave number above which k; =0
for a finite range of k,. For 8 > 16, the amplification curve possesses ki,

(1ext continued on page 58)
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Figure 3. Effects of densities on amplification rates; § = 400, 82 = 15, n = 0.

Table 1
Amplification Rate (3 = 400, y = n = 0)
w p = 0.0012 p=0
ke K K, &
0.10 0.100 - 0.0035 0.100 - 0.0035
0.20 0.200 - 0.0070 0.200 - 0.0069
0.30 0.300 - 0.0104 0.300 - 0.0100
0.40 0.400 - 0.0136 0.400 - 0.0128
0.50 0.500 -0.0164 0.500 - 0.0151
0.60 0.600 - 0.0187 0.600 - 0.0166
0.70 0.700 - 0.0204 0.700 -0.0170
0.7% 0.750 - 0.0210 0.750 - 0.0169
0.80 0.800 - 0.0213 0.800 - 0.0164
0.85 0.850 - 0.0214 0.850 - 0.0152
0.90 0.900 - 0.0212 0.800 - 00133
1.00 1.000 - 0.0194 1.000 0.0000
1.18 1.181 ~ 0.0053 t.180 0.0000

1.19 1.191 0.0000 1.190 0.0000
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Figure 4. Effects of swirl on amplification rates; 8 = 25, p = 0, n = 0.
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Figure 5. Effects of 8 on amplification rates; 842 = 15, n = p = 0.
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(rext continued from page 55)

which increases with decreasing 8. The second critical wave numbers
above which the disturbances are all unstable also exist for 8 > 16. They
fall outside of Figure 5, however. Qualitatively similar curves were also
found for nonswirling jets and other parameter ranges. According to the
asymptotic analysis for k, — oo given in the previous section, k; = — o
as k, — oo for all flow parameters. The curves in Figure 5 do indicate
this asymptotic behavior. It is seen that the most populous drop size cor-
responding to the most amplified waves in an inviscid jet of finite diame-
ters can be reduced by decreasing the value of 8, i.e., by using a smaller
Jet velocity, a smaller jet diameter, or a smaller liquid density for a given
surface tension. .

Physically, B represents the ratio of inertia force to the surface tension
force. The values of 8 encountered in the intact jet applications (ink jets,
jet cutting, etc.) are of orders ten to hundreds [1], and those encountered
in the present-day atomization applications are of order greater than or
equal to thousands [10]. Some asymptotic results for large values of 3 are
given in Table 2. As can be seen, the qualitative behaviors of the jet
breakup described above remain the same over the range of 8 mentioned.
Thus the present findings are useful for a wide range of applications.

Table 2
Amplification Rate (p = 0.0012, y =n=0)
g8 = 30,276 8 = 10,000
w Kk, k w Kk, k

45 4.5010 - 0.1464 4.0 4.0024 - 0.1149

65 6.5021 - 0.2046 6.0 6.0054 - 0.1490

95 9.5045 - 0.2835 8.0 8.0096 - 0.1624
15.5 15.5119 - 0.4073 85 8.2602 - 0.1622
205 20.5208 ~ 0.4695 8.0 9.0121 -~ 0.1585
240 24.0286 - 0.4849 1.0 11.0182 - 0.1136
255 25.5323 - 0.4827 120 12.0216 - 0.0271
27.5 27.5376 - 0.4698 12.050 12.0718 - 0.0023
30.0 30.0447 - 0.4333 12.0503 12.0721 - 0.0008
35.0 35.0609 - 0.2269 12.05035 12.0724 0.0000
36.261 36.3261 0.0000

CONCLUSION

It is shown that an inviscid liquid jet with a swirl is more unstable with
respect to nonaxisymmetric disturbances than to axisymmetric distur-
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bances. This is contrary to the results for a jet without a swirl obtained by
Keller et al. {2]. The jets are unstable with respect to disturbances of
wave lengths longer than certain values which depend on the relevant
flow parameters. For a given set of flow parameters, a maximum growth
rate may exist at a finitc wave number. The maximum growth rate may
be enhanced by increasing the density of the ambient gas into which the
liquid jet emanates. This enhancement is accompanied by sometimes un-
desirable broadening of the size distribution. The enhancement can be
achieved more effectively by introducing a larger swirl without entailing
an undesirable side effect greater than that introduced by the dense gas.
On the other hand, if a larger intact length without a jet breakup is de-
sired, the swirl inside the nozzle and the unnecessarily large ambient gas
density must be avoided. A snialler disturbance amplitude at the nozzle
exit is also shown to promote a smaller spray angle. It may even make a
finite intact length attainable.
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APPENDIX D

Mechanisms of the Breakup of Liquid Jets

S.P.Lin* and Z.W. Lian
Department of Mechanical and Industrial Engineering
Clarkson University, Potsdam, New York 13676

A general theory of the onset of breakup of liquid jets in an ambient gas is given. The theory is
based on the linear stability analysis of a viscous liquid jet with respect to spatially growing
disturbances. The three independent parameters in the theory are the Reynolds number R, the Weber
number We, and the gas to liquid density ratio Q. The numerical results obtained from a single
characteristic equation over a wide range of the parameter space reveal that there are two fundamentally
different mechanisms of the jet breakup. The first is the capillary pinching which breaks up the jet into
segments. The second is the capillary wave resonance with the gas pressure fluctuation which generates
droplets much smaller than the jet diameter. An argument based on the boundary-layer instability theory
is used to demonstrate that the shear waves at the liquid-gas interface plays a secondary role in the jet
breakup.

*Professor
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L Introduction

Atomization is a process of breaking up a jet into droplets of diameter much smaller than the jet
diameter. This process is widely used in industrial applicaitons including fuel injections in intemnal
combustion engines. A good knowledge of the fundamental mechanism of atomization is essential for
raising the combustion efficiency and reducing the environmental pollution. Unfortunately our
understanding of the fundametnal mechanism is far from complete. This work delineates the parameter
range of operation in which atomization can be achieved. Distinctive mechanisms of jet breakup in the
atomizaiton regime as well as other regimes are elucidated.

Plateau® observed that the surface energy of a uniform circular cylindrical jet is not the minimum
attainable for a given jet volume. He argued that the jet tends to break up into equal segments of length,
which is 9 times the jet radius, because the spherical droplets formed from these segments give the
minimum surface energy for the same jet volume. Neglecting the effects of gravity and ambient gas,
Rayleigh2 showed that the mechanism of the jet breakup is the hydrodynamic instability caused by the
surface tension. He introduced into the jet infinitesimal disturbances which may grow or decay
everywhere in the jet at the same rate. He found that the fastest growing disturbance has a wavelength
equaling 9 times the jet radius. Weber3 and Chandrasekhar® found that the viscosity has only a
stabilizing effect which reduces the breakup rate and increases the drop size. Keller et al.5 observed that
these theories were based on the assumption that the disturbances are temporally growing, while the
observed disturbances actually grow in space in the flow direction. In particular the disturbance at the
nozzle exit cannot grow in time. They extended Rayleigh’s analysis for spatially growing disturbances
and found that Rayleigh’s results are relevant only to the case of small v es of the Weber number
which is the ratio of the surface tension force to the liquid inertia force. For the Weber number of order
one or greater, they found a new mode of faster growing disturbances of much larger wave lengths than
those of the Raxlleigh mode. An association of this mode with the absolute instability was made by Leib
and Goldstein®7. Note that in the above mentioned theories, the effect of the ambient gas is neglected,
and that the predicted drop sizes are of the same order as the jet diameter. Thus, these theories cannot be
applied to the atomization phenomenon which is the breakup of a liquid jet into droplets much smaller
than the jet diameter. To explain the atomization process, Taylor® took the gas density into account. He
considered the limiting case of an infinitely thick jet and extremely small gas to liquid density ratio.
Taylor’s analysis for the case of temporally growing disturbances with small density ratios was extended
by Lin and Kang9 to the case of spatially growing disturbances with finite density ratios. Lin and Kang
showed that the spray angle is proportional to the imaginary part of the complex wave number
corresponding to the fastest growing disturbances. They compared the predicted drop sizes caused by the
pressure fluctuation and by the shear waves at the liquid-gas interface with the experiments of Reitz and
Braccol0 and concluded that the basic mechanism of atomization is the interfacial instability caused by
the pressure fluctuation. Lin and Kang also discussed the relationship between temporally and spatially
growing disturbances. Their results showed that the maximum growth rates of disturbances all occur at
wave numbers of order one in the parameter range relevant to atomization. The drop size being
proportional to the wave length and the wave length being normalized by the capillary length, the
atomized droplet diameters are therefore proportional to the capillary length, a2 which is the ratio of
surface tension to the inertia force per unit volume of the ambient gas; i.e. 6/poU“ where 6 is the surface
tension, p is the gas density, and U is the jet speed. Since the atomized droplets are much smaller than
the jet radius r,,, we must have

alrg = o/(p1U%r)(p1/p2) = We(p1/pp) ( 1, (1)

where p1 is the liquid density. It follows from Eq, (1) that the necessary condition for atomization is We
{{ Q where Q = py/p;. The work of Lin and Kang9 covered only this atomization regime. Consequently,
they were unable to delineate both Taylor's atomization regime and Rayleigh's capillary pinching regime
in the same parameter space. This delineation is done here for the first time with the aid of numerical
results obtained from the same characteristic equation. This enables us to gain a more unified
understanding of the mechanism of jet breakup. It follows from the definition of a that we must have for
the Rayleigh regime a/r, = We/Q > 1, since Rayleigh'’s capillary pinching results in droplets of diameters
larger than the jet diameter. The effect of the Reynolds number on this regime is expounded in this work.




Efforts to gain a unified understanding of the mechanism of jet breakup are well documented!1.12,
While the previous works were based on various asymptotic analysis of temporally growing disturbances,
the present unified theory is based on extensive numerical solutions of the single characteristic equation
for spatially growing disturbances in a jet of finite radius. One of the main conclusions in this work is
that atomization is not due to capillary pinching but rather due to the interfacial pressure fluctuation. This
conclusion is arrived at not by resorting to a comparison of the theory with experiments as was done in
our previous work”. Careful analyses by Reitz and Bracco!0 of existing experimental works on
atomization seemed to eliminate the turbulence fluctuation, cavitation, pressure fluctuation and
boundary-layer instability in the nozzle as the fundamental mechanism of atomization, and thus identify
the pressure fluctuation at the interface as the fundamental cause by implication. However, the present
theoretical work is the first to demonstrate this point explicitly.

II. Unified Theory

Consider a circular cylindrical jet of an incompressible viscous Newtonian liquid issued from a
nozzle into an unbounded inviscid gas. The goveming dynamic equations of motion in the liquid and the
gas phases are respectively the Navier-Stokes and the Euler’s equations. The boundary conditions are the
vanishing of the net force per unit area of the interface, and the equality of radial fluid velocity in each
phase with the total time rate of change of the interfacial position. A uniform velocity distribution in a
circular jet of constant cross-section in a quiescent gas is an exact solution to this set of differential
equations in the absence of gravity. This exact mathematical solution representing a possible basic state
is physically unstable. The stability analysis of this basic state with respect to disturbances which grow in
the axial direction from the nozzle exit has already been given9 and will not be repeated here. The
characteristic equation of any Fourier component of the disturbances of the form Cyexp{wrt + iky], is
given by Eq. (2) when viewed in a reference frame with its origin fixed at the nozzle exit

©-2s XEH® 2 hRL K
R 1HK) W2+x2 L)

2.2 K
x(co-ik)+w2Q ____l k M1 &)
A2+k2 K 0IgK)
A2-k2 LK)

-Wek(1 -k2)
A2+i2 IpK)

=0, ¢

where C, is the wave amplitude, @ is the complex wave frequency the real part of which gives the
exponential temporal growth rate and imaginary part of which gives the wave frequency of disturbances,
k is the complex wave number the real part of which is equal o 2nry/(wave length) and the imaginary pan
of which gives the spatial amplification rate, T is time and y is the axial distance respectively
nondimensionalized with the jet radius divided by the maximum axial velocity and the jet radius, and 1
and K are respectively the modified Bessel functions of the first and second kind, their subscripts denote
the order of the functions, and A is defined by

A2 =k2 4+ R(®- ik).

It is seen from Eq. (2) that the instability of the liquid jet is characterized by the three independent
parameters R, We and Q. In a reference frame moving with the jet velocity U, Eq. (2) can be formally
reduced to that obtained by Sterling and Sleicher!3 for temporally growing disturbances, if the wave
number is treated as real and the wave frequency is treated as complex. However such a Galilean
transformation is physically inadmissible for spatially growing disturbances in a jet which posseses no
translational invariance, and hence there is a fundamental difference between these two theories.




In the limiting case of R — < and Q— 0, Eq. (2) with ® = iw; reduces to

(@; - )2 = We k(k2 - DI K)/15(K). (3)

This is the result obtained by Keller et al4 for the case of spatially growing axisymmetric disturbances.
They showed that Eq. (3) is related to Rayleigh’s result

o2 = Wek(&2-1)I; ()/Io(k) @

by the Galilean transformation of the reference frame movmg with the basic state jet velocity, where 0g
is Rayleigh’s temporal complex wave frequency appearing in his solution of the form constant x
explikz-wRT)]. They also show that the asymptotic solution of Eq. (3) for We — 0 near the maximum of
the spatial growth rate, k; is related to the Rayleigh temporal growth rate oR; by

= o + O(We?), )
k; = £ @g; + O(We?), ©

where the subscripts r and i denote respectively the real and imaginary parts. Thus the spatial growth rate
k; can be obtained accurately from the temporal growth rate OR; of the Rayleigh mode by use of Eq. (6)
only when We — 0. When We is of nrder one Keller et al.4 found from the solution of Eqg. (3) a new mode
of disturbances the growth rate of which is two order of magnitude larger than the above Rayleigh mode.

Leib and Goldstein®7 and Lin and Lian!4 recently showed that this new Keller’s mode actually exists in
the parameter range in which absolute instability occurs. The consequence of the absolute instability and
the physical meaning of Keller’s mode can be made clear only by use of a nonlinear theory, and will not
be pursued here. This is a simple example demonstrating the qualitative difference between the temporal
and spatial disturbances. Another example demonstrating this point is given by Lin!13:16 jn his studies of
the stability of a viscous sheet. It should be pointed out that Eq. (6) is consistent with the Gaster!’
theorem which states that, to the first order approximation, the temporal growth rate is given by the
product of the corresponding spatial growth rate and the group velocity of the disturbances i.e. @R; = k;

(dw;/dk,), which is Eq3(6) by virtue of Eq. (5). The growth rate of the Rayleigh mode obtained from Eq

(3) with We = 2.5x10"7 is given as curve R in Fig. 1.

In the limiting case of Q — 0, after using the equation preceeding Eq. (3), Eq. (2) is reduced to

2k2(k2+ 12) 11'_@ 1- 2kA 1K1y Ov)
Io®) k2422 100 (k)
A -a-kHIk i% =0, )

where J = R2We. This is the characteristic equation given by Chandrasekhar for the breakup of viscous
liquid threads in vacuum.

In the Taylor limit ry — oo, k in Eq. (1) can be rescaled with the capillary length a as
k = Ka(rp/a) =k(r,/a); K = 2r/(wave length)
where K is the dimensional wave number. Note that k—ee nceds not imply that k—eo. In fact Taylor's

results show that k=0(1). By use of asymptotic expansions of the Bessel functions fork — oo as (rofa) = oo,
we reduce Eq. (2) to




[R(@ - ik) + 2k2)2 + R2Wek3 + QR2w?2 - 4k2A = 0. @®)

This is the equation obtained byTaylor.s'gNote that (ro/a) — ec implies R — oo, and by virtue of Eq. (1) We/Q
— 0. The growth rate curve obtained from Eq. (8) with ® = iw; for the values of R = 2x10™ We =
1.964x10-3, Q= 0.0013 is plotted as curve T in Fig. 1. The curve right below curve T is obtained from
Eq. (2) for the same parameters. Lin and Kang showed that when Q ((10.01. Taylor’s temporal growth
rate is related to the spatial growth rate of Lin and Kang by the Gaster 6 theorem. However when the
density ratio is of order 102 or greater, the spatial and temporal theories differ significantly.

The rest of the paper will be devoted to the elucidation of the breakup of viscous liquid jets of
finite radius in the gas by use of hitherto unavailable results. The results are obtained from the solution
of Eq. (2) over a wide range of the relevant parameter We, R and Q. The method of solution used is the
Muller method!8. Since the observed disturbances grow spatially and oscillate temporally in
atomization, we treat @ as purely imaginary but k as complex, i.e. ® = iw; and k = k; + ik;. Here we do
not consider the case of absolute instability for which the disturbance grows both spatically and
temporally“.

The solution of the equation obtained by Keller et al. for the case of R = e», Q = 0, and We = 0.0025
is reproduced as curve R in Fig. 2. For the same values of We = 0.0025 and R = 2x10% two additional
curves in the same figure are obtained from Eq. (2) respectively with Q = 10 and Q =0.0013. The value
of Q = 0.0013 corresponds to the air to water density ratio in one atmosphere at room temperature. It is
seen that the presence of the atmosphere tends to increase the maximum amplification rate by more than
20 percent over that predicted by the Rayleigh equation (3). This deviation is even greater either when Q
becomes greater or R becomes smaller. Hence Kayleigh’s rv:ésuhs are good approximaticns if Q ( 0.0013
and R ) 10%. The experimental results of Goedde & Yuen!® and Donnelly & Glaberson?0 are included
in the same figure for comparisons. Their experiments were conducted at one atmospheric pressure and
room temperature. They did not record the values of R and We for each of the experimental points, since

‘their experiemtns were intended for comparisons with Rayleigh’s theory which is independent of the jet

velocity. However, the ranges of R and We can be calculated from their experimental data to be
" respectively (3~10)x103 and (1.44~8)x10‘3. Note that the values of We used for the theoretical curve in
Fig. 2 are of the same orders as those in the experiments. However the values of R used for the plots
including Rayleigh’s curve are larger than the experimental values. Note that the temporal growth rate
w/(o/r, pl)V2 = o' reported by Goedde & Yuen is related to k; through Eq. (6) by k; = 0R; = well2g,
because of different nondimensionalizations used. It appears that the results of experiments in the
atmosphere agree better with the theory of the inviscid jet breakup in a vacuum rather than with the
corresponding theory of breakup of a viscous jet in atmosphere. The better agreement is probably
fortuitous. The growth rates at the swell and the neck in the experiments were found to be different
constants. The growth rate was taken to be the logarithm of the difference between those at the neck and
the swell in the jet. This is neither consistent with the temporal growth rate which is theroetically the
same constant everywhere in the jet nor is it consistent with the definition of spatial growth rate. Thus,
the comparisons were made between two physically different quantities. New measurements of spatial
growth rates as funcitons of R, We and Q are very desireable. Two amplification curves for two different
values of We are plotted near curve R in Fig. 3 for Q =0.0013 and R = 2x10%. The curve R is the same
curve R given in Fig. 1. The amplification rate increases as We is increased, clearly indicating that
surface tension is the destabilizing factor. The jet axial velocity relaxation was shown by Leib and
Goldstein® to make the Rayleigh mode more unstable. However, the mechanism remains the capillary
pinching.

On the contrary, surface tension is a stabilizing factor for the Taylor mode. This is seen from the
three curves plotted near curves T of Fig. 4 for three different values of We. The curve T is the same
curve T appeared in Fig. 1. As We is increased withR = 2x10% and Q = 0.0013 held constant, we see that
the amplification is decreased. Thus, the major difference between the jet breakup by the Rayleigh mode
and by the Taylor mode is that while the former is due to capillary pinchings. the latter is due to a mean
other than surface tension, because surface tension is stabilizing. This other mean is either due 1o the
pressure fluctuation or shear stress at the interface. The interfacial shear will be eliminated as the cause
of atomization on physical ground. The factors involved in the nozzle are excluded, because the site of
atomization is %t the interface. These factors can affect the alomization only indirectly”.Note that We =
2.5x10°3 ~ 1072 for the Rayleigh mode, and We = 2x10 ~ 2x10°0 for the Taylor mode at Q = 0.0013




and R = 2x10%. Hence, there is a value of We between 103 and 104 below which the breakup is due to
pressure fluctuation but above which it is due to the capillary pinching. The specific tum around value of
We depends on the values of R and Q given, and will be further explained later.

The curves A in Fig. § is the amplification curve for R = 34.5, Q = 0.0013 and We = 0.0025. The
curve S is obtained from Eq. (7) with the same values of We and R but for Q = 0. The ambient gas is
again destabilizing. The corresponding experimental results of Goedde and Yuen!8 are also presented for
comparison. The measured growth rate @ for this case was normalized by (v/roz). Thus their growth
rate is related to our k; through Eq. (6), and is given by

k; = OR; = W/(V/rg2)R.

The two additional curves in Fig. 5 for two different values of We and Q = 0 show that, when compared
with the Rayleigh modes depicted in Fig. 1, the surface tension remains a destabilizing factor even if the
liquid viscosity is increased to reduce R to 34.5. Note that in the case of Q = 0, the only relevant
parameter is J = R2We. Thus the curve S in Fig. 5 can be used for any R and We as long as the
corresponding J remains 2.976. This fact will be used to show that the non-vanishing of Q is essential for
the Taylor mode. Consider the curve with Q = 0.0013, We = 0.744x10-8 and R = 2x104 belonging to the
Taylor atomization regime in Fig. 1. Retaining the same values of We and R but putting Q = 0, we obtain
an amplification curve which is exactly the curve S given in Fig. § since the value of J remains 2.976.
Thus the curve in the Taylor regime is brought down to the Rayleigh regime simply by reducing the
values of Q from 0.0013 to 0. Hence in order to remain in the atomization regime, the presence of
ambient gas is essential. Without the ambient gas, atomization cannot occur even if the surface tension is
so small that We = 0.744x10°8-

Fig. 6 shows that even when R is reduced to 0.1 the breakup mechanism remains the capillary
pinching when We ) Q, since the amplification rate increases with We.

The amplification curves for We = 1.964x10°3, R = 3.371x10%, and two different values of Q
given in Fig. 7 together with the curve for the same values of We and R but with Q = 0.0013 given in Fig.
1 show how the amplification rate and the range of unstable wave lengths of the Taylor mode are
increased as Q is increased from 0.0013 t0 0.13. This range of Q corresponds to the air to water density
ratio under pressure ranging from 1 to 100 atmospheric pressure. The same destabilizing effect of Q for
the Rayleigh mode is depicted in the lower left comer of Fig. 1. Figs. 8 and 9 show the damping effect of
viscosity on the Rayleigh and Taylor modes.

The present theory can be used to explain the spray angle 0 of an atomizing jet. The displacement
of the interface from its unperiurbed position is d = C, exp[i(w;T + kz)}, where C, is the initial amplitude
at the nozzle exit, which remains arbitrary in the linear theory. Thus,

tan(0/2) = - 4 (envelope of d) = C,, k; exp(-k;y). )
dy

Expanding Eq. (9) in Taylor’s serics, we have
tan (62)=Cokj (1 -kjy+ ...) . (10)

Hence, unless Cyk; is sufficicnily large, a measureable © may not appear until some distance down-
stream in the -y ginection. This may be the origin of the so called intact length over which the jet does
not appear to diverge. Table 1 compares the spray angles 6 measured by Reitz and Bracco'V in their test
series 64 to 67 with that predicted with the present theory. Tangent of half of the measured spray angles
i.e. tan (6/2) are given in the fourth column of Table 1. The predicted values of k;, which is related to
spray angle by Eq. (10), are given in the seventh column of the same table. When the measured values of
tan (6/2) are substituted into the left side of Eq. (10), and the predicted values of k; are substituted into the




right side of Eq. (10), it is found that at the nozzle exit where y=0 this equation is satisfied only if the
values of the coefficients C,, are given by that given in the sixth column of Table 1. C, represents the
initial disturbance amplitude at the nozzle exit. It appears that the spray angles depend not only on the
spatial growth rate k; but also on the initial disturbance amplitude C, at the nozzle exit. Note that these
values of C, are all of the same order of magnitude, probapiy reflecting the fact that the level of
disturbances at the nozzle exit in the different series of test are about the same. A full nonlinear theory is
required to make a quantitative statement, however.

III. DISCUSSION

The results for some limiting cases of the unified theory and their comparisons with some limited
experimental results have been used to demonstrate the validity and the limitations of the theories of
Rayleigh, Weber, Chandrasekhar, Taylor and Keller et al. on the onset of the liquid jet breakup.
However, it was assumed that the viscosity of gas is of secondary importance in the process. This
assumption must be examined. If the viscosity is present in the ambient gas, the high speed of the liquid
jet will cause the formation of a thin boundary-layer near ths liquid-gas interface. The boundary-layer
may become unstable and gencrates the Tollmein-Schlicting 1 waves (shear waves). The shear waves
may extract kinetic energy from the mean flow and amplify. Thus the shear waves may participate with
the pressure fluctuation and capillary force in bringing about the breakup of liquid jets. The order of
magnitude of the size of droplcts generated by the shear waves may be estimated with the critical shear
wave length at the onset of the boundary layer instability. The velocity profile in the boundary-layer near
the free surface of a jet is not known, the boundayr-layer flows over continuously moving solid surfaces in
an otherwise quiescent fluid?2-24 are probably the closest known flows to the free surface
boudnary-layer flows. Unfortunately the stability refults of these flows are not available. For this
reason, we will use the stability results for the Blasius 1 flow over a stationary solid surface to estimate
the size of droplets generated by shear waves. It should be pointed out that the shear stress and the
velocity distributions in both types of solid surface boudnary-layers are of the same order of magnitude.
Therefore we do not expect to obtain a different order of magnitude of drop size from a "solid jet”
boudnary-layer flow even if the staiblity results of this flow are available. The critical Reynolds number
and the critical wave length of the Blasius profile are given respectively by

R = Ubivy =400, A, =(2n/0.3)(5/0.32), (¢B))
It follows from Eq. (11) that
A = 26180 v,/U. (12)

Thus, in general, there are three length scales A, ry and a characterizing the size of droplets caused
respectively by shear waves, capillary pinching and the pressure fluctuation. Depending on the range of
paramelers, one or two characteristic lengths may be predominant. ;

For example consider a jet of 0.034 cm diameter with a maximum velocity %f 1.11x10% cmysec.
'5 is the water jet atomized under 1 atmosphere in test 23 of Reitz and Bracco.lV- Usin§ vy =0.15
cm</sec at room temperature, we find from Eq, (11) A, = 0.35 cm. Using vy = 0.01 cm4/s, ¢ = 72
dynes/cm, py = 1 gm/cm3, Py = 0.0013 gm/cm>, we find R = 18870, We = 3.438x10°9, Q= 1.3x10°3,
Thus the present jet is operating in the Taylor regime since We ({( Q, and the characteristic wavelength is
2ma = 2.8x10"7 cm. This is sevcral orders of magnitude smaller than A, and 2nry = 0.11 cm. Therefore,
in the process of atomizing this jet, the shear waves play little role, since the measured atomized droplets
scale with a.

If both the diametcr and the velocity of the jet in the last example is reduced by a factor of 10, we
have R = 188.7, We = 3.438x10°2, and Q= 1.3x10°3, Thus We » Q and the jet is now operated well
within the Rayleigh regime although the damping effect of the liquid viscosity neglected by Rayleigh is
now significant at R = 188.7. The characteristic length is of order 2xry = 0.011 cm which is two order of




magnitude smaller than the critical shear wave length A, = 3.5 cm and one order of magnitude smaller than
2ra = 0.28 cm. Hence the shear wave and the pressure fluctuation are not responsible for the breakup.
The breakup in the Rayleigh regime is by the capillary pinching.

We conclude by reiterating that there are three characteristic lengths in the jet breakup. They are
relevant to three distinctive mechanisms which operate in different parameter ranges. These are
summarized in Table 2. However, it can be seen from this table that a jet may actually breakup by more
than one mechanisms in the overlap regions of the characteristic parameter space. For example, it may
break up under the simultaneous actions of the capillary pinching and the pressure fluctuation. This
occurs when We/Q = O(1). Consider a water jet of 0.034 cm diameter issued at 1.1 1x103 cm/sec into the
atmosphere at room temperature. The relevant parameters are R = 1887. We = 3.438x10°3, Q =0.0013.
Then We ~ Q, and the jet is broken up at the outer edge of the Rayleigh regime discussed in the previous
section. The characteristic wave length is now of the order of 2xr, = 0.11 cm which is of the same order
as the atomization length 2na = 0.28 cm, but much smaller than the possible shear wave length A, = 3.5
cm. Therefore the shear wave is again a bystander of the event of the breakup. However, the breakup is
now under the simultaneous actions of the capillary pinching and the pressure fluctuation which may, in
general, produce a bimodal distribution of the drop sizes. In order t0 enable the shear waves to assist
significantly the capillary pinching in the breakup process, we must have r, ~ A.. and We ) Q. It follows
from Eq. (12) that this requires

G ) (26180.v9)2p/r,.
For the sake of demonstration, lct v5 = 0.15 cm2and 6 =72 dyn/cm. Then the above inequality becomes
(Po/re) { 4.67x10°0 gm/cm4,

This condition is difficult to satisfy in common practice for gases in one atmgsphere. However, for a
water jet of 0.35 cm radius and U =3 x103 cm/sec in a rarefied gasof pp = 100 gm/cm3, we have We =
2.29x10"5 ) Q = 10°6, R = 105000, A, = 1.31 cm, 27r, = 2.1 cm and the above inequality is satisfied.
Only when the density of the gas is reduced to such a low level can the capillary pinching and the
interfacial shear work hand in hand without the interference from the pressure fluctuation. Finally, in
order to induce the shear waves (o assist the atomization, we require 7"c ~aand We (Q, i.e.

G ~ 26180 ppvoU and o {poUr,,.
Using v5 = 0.15 cm?/sec, we can combine the above two relations to give
4.668x10°6 gm/cm? ) py/r,.

Again, this condition can be satisfied only in a very low density gas and by a relatively thick jet. Thus,
for example, if py = 107 gm/cm3 py=1 gm/cm3' 60 =72 gyn/cm. vy =0.15 cmzlsec. Io=10cm,and U=
3000 cm/sec we have R = 3x100, We = 0.8x100 ( 10'5, A, = 131 cm, a = 1.8 cm and the required
condition is satisfied. This example demonstrates how hard it is to induce the shear wave to assist in the
onset of atomization. It should be emphasized that we are referring here to the role of the shear waves on
the onset of atomization. Obviously, in a fully turbulent gas the atomization process may be assisted by
the small part of turbulence spcctrum whose wave lengths are of the same order of magnitude as the
capillary length a. It should also be pointed out that the gas viscosity is treated as a parameter in this
analysis. A more precise dclincation of the breakup regimes can be achieved by a more complete stability
analysis which considers thc coupled effects of the gas viscosity with all other relevant physical
properties, A nonlinear theory of alomization of a viscous liquid jet in a viscous gas is not yet
available.26
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TABLE 1 Spray angles of atomizing jets

Series  Qx10°  Wex10° rya  10%xtan(62) C, 10%xk;  axl0° cm
64 13 2754 944 1.66 06 277 3602
65 77 2754 559 8.31 143 581  6.08
66 258 2504 2061 1646 213 173 1.65
67 515 2527 409 14.95 260 575 0.83
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Table 2. Onset of jet breakup

Mechanism Characteristic Parameter

Length range (mode)
R)10* (Rayleigh)
Capillary Pinching To Q{(We
R(10* (Weber-Chandrasekhar)
Pressure
a=(Wc/Qr,, we((Q(1, 1<R (Taylor)
Fluctuation
Q(We R~26180(vo/vy)
Shear Waves A:=26180r5(vo/V1)/R
QWwe R~26180(vo/Vi XQ/We)
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APPENDIX E

Energy Budget in Atomization

S.P. Lin* and B. Creighton
Mechanical and Industrial Engineering Department
Clarkson University, Potsdam, NY 13676

An equation of mechanical energy balance in a liquid jet atomizing in an ambient gas is
derived. The time rate of change of kinetic energy of the fluctuating disturbance in a given
volume of the jet is shown to be equal to the sum of four types of works done per unit time on the
jet and the energy dissipation rate through the agent of viscosity. The four types of works involved
are the work by the surface tension, the work by the pressure fluctuation in the ambient gas, the
work done by the fluctuating pressure in the jet, and the work by the viscous stress. Numerical
results obtained for a wide range of relevant parameters are used to show that the surface tension
work is negative in jet atomization. This is contrary to the situation in the breakup of an ink jet for
which the surface tension work is positive, and thus the breakup is due to capillary pinching. It is
shown that the work by the fluctuating gas pressure is responsible for the atomization process,
since the pressure work term is the dominant positive term in the energy budget of the jet
atomization.

* Author to whom correspondence should be directed.




INTRODUCTION

Rayleigh (1878) showed that a circular inviscid jet issued straight into vacuum is
dynamically unstable. The instability is associated with the resonant capillary wave which tends
to breakup the jet into droplets of diameters larger than the jet diameter. This Rayleigh mode of
breakup also occurs in a slow viscous jet which has a small inertial force compared with the
surface tension force. However, a viscous jet issued at a sufficiently high speed into an ambient
gas may breakup into droplets of diameter much smaller than the jet diameter (Taylor, 1963). This
mode of jet breakup is called atomization. From an energy consideration, Chandrasekhar (1961)
showed that the basic mechanism of the jet breakup in the Rayleigh mode is capillary pinching.
However the basic mechanism of atomization, despite its wide industrial applications, remains
relatively unclear. Experimental and theoretical works on atomization are reviewed in recent
articles by Reitz and Bracco (1986), Dietrich (1987), and Reitz (1988). Most of the known
aerodynamic theories of jet breakup attribute the breakup to the temporal growth of the
disturbance inherent in the jet. However more recent works (Keller et al. 1972; Leib and
Goldstein, 1986; Lin and Kang, 1987) took notice that the observed disturbances actually grow
spatially from zero amplitude at the nozzle exit along the jet axis. Lin and Kang (1987) discussed
the relation between the temporal and spatial disturbances. They compared their theoretical
results with the experiments of Reitz and Bracco (1982) and conjectured that the basic
mechaiism of atomization is the interfacial pressure fluctuation. They demonstrated with a
physically plausible estimate that the shear waves generated at the liquid air interface are
incapable of generating droplets as small as the capillary length to which the atomized droplets
scale. Here we isolate the work done by the fluctuating gas pressure from other effects. We show
that the pressure work term is indeed the dominant term in the energy budget of an atomizing
jet. The itemized budget includes the energy dissipation through the agent of viscosity, the
surface tension work, the pressure works and the work by the viscous stress. An equation which
equates the sum of these items for a given volume of the jet with the time rate of change of the
kinetic energy of the disturbance is derived in the next section. The numerical values of each
item in the energy budget is evaluated over a wide range of relevant parameters in the third
section. The numerical results demonstrate that the pressure work by the fluctuating pressure of
the ambient gas dominates all other terms, and causes the kinetic energy of the disturbance in a
given volume of jet to grow as the given volume of jet fluid travels downstream.

ENERGY EQUATION

Consider a liquid jet injected into an unbounded gas. The governing equations of motion
are the Navier-Stokes equations
pilo, Vi+(V;- V) Vj]=-VP+V.0;+¢g, 1)
V-V;+Dp;/Dt=0, (i=1,2) )
where the subscript i=1 denotes the liquid and i=2 denotes the ambient gas, p is the density, V is
the velocity, t denotes time, V is the gradient operator, P is the pressure, O is the stress tensor
excluding the pressure, g is the gravitational acceleration, and D/Dt is the substantial derivative

DDt=9,+V;-V .




Let us consider the fluids to be incompressible, then
Dp;/Dt=0 . 3)

Let the fields of velocity, pressure and stress in the fluids be written as the superpositions of the
steady basic state in equilibrium and the perturbations,

Vi=Vi+v” . Pi=Pi+P;’ , gj=0j+q;’, @)

where the upper bar denotes the basic state, and the primes denote perturbation. Substituting
Eqgs. (3) and (4) into (1) and (2), and subtracting the basic state which satisfies Eqs. (1) and (2), we
have

PiO Vi +Vi- Vv " +v"-VV,4+v,"-Vy;)=-Vp,"+V.q,;’, )
V-v;’=0.

For the Newtonian fluids considered

o/ =V +Vy Ty,

where U is the dynamic viscosity, and the superscript T stands for transposition. Here we are
interested in the origin of the onset of atomization. At the onset of atomization the nonlinear term
v’ - Vv in Eq. (5) is small compared with the linear terms. In the subsequent analysis, this
nonlinear term will be neglected.

Forming a dot product of Eq. (5) with v’, using the
incompressibility condition V v * = 0 to simplify the pressure term, then integrating over the
control volume shown in Figure 1, and upon applying the divergence theorem we have

J@+V-Ve'dV+]pv'-[(v'-V)V]dV
=-[Pyv'-ndS+[(v’'-6)-ndS-2wfo-o’dV, 6)

where the subscript 1 has been and will be omitted except for P, " = p v’ - v /2 is the
disturbance kinetic energy per unit volume of the liquid jet, n is the unit normal vector pointing
away from the liquid, and dS is the element of the control surface. The first integral on the right
side of Eq. (6) is the time rate of reversible work done on the surrounding gas by the pressure
fluctuation in the liquid. The integral following the reversible work term is the rate of irreversible
work done by the viscous stress on the control surface. The last integral in Eq. (6) is always
positive, representing the mechanical energy dissipation through the agent of viscosity.

In the atomization application, the inertial force and the surface tension force are much
larger than the gravitational force and the viscous force in the gas. The effect of gas viscosity is
discussed in the last section. With g = py = 0, Egs. (1) and (2) possess an exact solution
representing a basic flow of a uniform liquid jet velocity, U, in a quiescent gas (Lin and Kang,
1987). The pressure difference at the interface between the liquid and the gas balances exactly
the surface tension force on the cylindrical jet of a constant radius. For this basic state the pressure
work integral in Eq. (6) can be further refined by use of the interfacial boundary condition. The
interface is modeled as a mathematical surface without thickness. Thus the total force per unit
area of the interface must vanish. The linearized normal component of the force balance gives
(cf. Lin and Kang 1987)




Py’ =Py +2p UR’ - TMh 2 +Nzz) . atR=1,, )

where the subscripts R and Z denote respectively the partial differentiations in the radial and
axial directions, U’ is the radial component of the liquid velocity perturbation, T is the surface
tension, 1, is the radius of the circular jet, and 7 is the displacement of the interface from R=r,,
The tangential component of the interfacial force balance yields

WR'+Uz'=0,
(8)
VR'-V'/R+U'9/R=O,atR=rO,

where V’ is the tangential component of the liquid velocity perturbation, the subscript 8 denotes
partial differentiation in the azimuthal direction. Here we consider only the axisymmetric
disturbances, and hence the second equation in Eq. (8) is automatically satisfied. Substituting Eq.

(7) into the first integral on the right side of Eq. (6), and expressing the results in terms of the
dimensionless variables defined by

v=(u,w) =, WU , .2)=RDf,,pi=P/p U2 , 1=UG V) , d= Ny,
we have
1
-fpyv-nds=- 21:!_‘;Lu[(p2 +2u/Re) - W (d +dz)ldz - 2n [y riwpqlp dr, )

where again, the subscript 1 on u, v and w are omitted, A is the axial length of the control volume,
[ ]-7\. denotes [ - ]z:o -[: ]z:-}\" and

R, =p1 Ury/1 = Reynolds Number,
W =T/p; 1824 Io = Weber Number.

The first integral on the right side of Eq. (9) is the rate of work done on the control volume by the
normal force at the liquid-gas interface, and the last integral is the rate of work done by the liquid
pressure fluctuatian at the two ends of the control volume. Note that the control surface is taken
to be cylindrical, since the interfacial deformation will contribute to the surface integral only terms
cubic in perturbations. The cubic terms are consistently neglected at the boundary as well as in
the bulk of the jet in this linear theory.

Similarly, we express the viscous stress in terms of the velocity components and write the
rate of irreversible work integral and the rate of viscous dissipation integral in Eq. (6) in
dimensionless variables respectively as

fv-o-ndS=[3 QuuR2xdz
+[oluwp+u) +2ww,)ly 2nrdr,
and

D=-(R.) ! fo:6dV

1
=R 1[5 [ 1202 + w,2) + (wy + u)?2 mrdrdz . (10)
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Note that the first integral in the expression of the rate of irreversible work integral is due to the
viscous normal stress in the liquid. This term cancels exactly the same term in the reversible work
rate integral, as it should. Note also that the viscous dissipation is always negative.

With the above dimensionless expressions of power integrals, Eq. (6) can be written as

E=Pg+PI+S+V+D, (11)

where
E=@g-9,) /3 Jo0.502 + w2) 2 mrdrdz
= total time rate of change of disturbance kinetic energy in the control volume,

[}
Pg=-2n]; [uppl=; dz

= rate of work done by the gas pressure fluctuation at the interface
1
P1=-2ufodwp1]_xdr

= rate of work done by the liquid pressure fluctuation at the inlet and outlet of the control
volume

S=2nW, 3 [u(d +d,p)l-1 dz

= rate of work done by the surface tension.
V=R [ [u(w, +uy) +2ww,]; 2nrdr

= rate of work done by the viscous stress.

The integral on the left side of Eq. (6) was reduced to that of Eq. (11) by use of the fact that V/U =
-i,, where i, is the unit vector in the positive axial direction. This integral represents the rate of
increase or decrease of the disturbance kinetic energy in the control volume as it travels
downstream, depending on if the sum of the five terms on the right side of Eq. (11) is positive or
negative. Hence any dominant positive term among these five terms can be identified as the
main source of the jet instability which leads to the breakup. Note that if the sign of a power
integral is positive, then the particular work involved is on the control volume. Otherwise the
work is done by the jet on the surrounding. In order to determine the numerical values including
the sign of each term in Eq. (11), we must know the velocity and pressure fields as functions of
time and space explicitly. These fields within the context of linear theory can be obtained from
the bounded solution of Eq. (§) without the nonlinear term subjected to the boundary conditions
Egs. (7), (8), and the kinematic conditions at the interface

Uj=d1-81i dz , i=12) (12)
where 8;; =1 wheni=1,and §;; =O wheni= 1.
The velocity, pressure, and the interface fluctuations can be written respectively as

(m, rW) = (Wz, '\Vr) + C.C. y




Pi=Pi "+C.C,
and d=H+CC,

where C.C. stands for the complex conjugate, the subscripts r and z stand for partial
differentiations of the stream function V, p, “ stands for a complex pressure field, and H is the
complex displacement of the interface. The method of determining v, p5 “ and H can be found
elsewhere (Lin and Kang, 1987). Only the final results which are not reported elsewhere but are
required for the evaluation of the power and energy integral are given here,

v =1{A 1] (An) + B 1} (kn)lexp(i0 - k; z)

P2’ =QDK, (o) exp (8 - k;z),

P1 ' =B@-K) I, (kr) exp(i6 - k;2),

H = Cexp (i6 - k;2), (13)
A2=k2+i(@-K)R,,

6=kz+oT1,

where A, B, C, and D are integration constants, k = k. + ik; is the complex disturbance wave
number, ® is the wave frequency, 0 is the phase angle of the disturbance, I and K are the modified
Bessel functions of the first and second kinds respectively, the subscripts of the Bessel functions
denote their order, and Q is the density ratio, i.e.,

Q=p2/py -

The real part of the wave number k; is related to the wave length A of the disturbance by k, = 2
n/A, and the imaginary part k; gives the exponential spatial amplification rate of the disturbance.
The integration constants in Eq. (13) can be determined from the dimensionless versions of the
boundary conditions Egs. (7), (8) and the two kinematic boundary conditions in Eq. (12). A
non-trivial solution of this set of four homogeneous equations for the eigenvector (A, B, C, D)
exists only if the determinant of the coefficient matrix vanishes. This condition yields the
characteristic equation mentioned earlier. For the sets of characteristic values (k, @) which
satisfies this condition, the system of four homogeneous equations can be solved for the
corresponding eigenvector uniquely up to an arbitrary multiplicative constant. The eigenvector
thus obtained is

A=-2BK2 ;A2 + kD),

C =B k(2 - KA (/A2 + k) - k), (14)
D =-i B2 - kD)o I; (/A2 + k2@ - k) Ky (k) .

Without loss of information within the framework of linear theory, the arbitrary multiplicative
constant B in the above expressions can be put to 1.

The complex wave number and the real frequency were obtained by Lin and Kang (1987)
only in a limited parameter range for the limiting case of ro/a — o, where a = T/p; U< is the




capillary length. In order to obtain a more unified understanding of the jet breakup, we have
obtained the eigenvalues in a wide parameter range including the atomization regime for finite
I/a. The corresponding eigenvector is then obtained from Eq. (14). Hence the integrand in each
item of the energy budget Eq. (11) is now a known function of time and space. Note that the
integration in the axial direction is from z = -A to z = 0. This integration at any given time is
equivalent to integration from 6 = -2x to 8 = 0. The numerical integration was carried out with
double precision by use of the method of numerical quadratune (Ralston and Wilf, 1967). Both
sides of Eq. (11) were evaluated independently. The equality condition of both sides provides a
check for the numerical accuracy. Numerical results over a wide range of W, R, and Q have
been obtained. Some representative results are summarized in Table 1.

RESULTS

Since in the linear theory the disturbance amplitudes are determined only up to an arbitrary
multiplicative constant, the relative values of the power integrals rather than the absolute value
of them are physically significant. We chose to normalize each power integral by use of the sum
of all power integrals which is equal to E, and define

(Pg* PLS YV, d)=100 (Pg' Pl' S,V,D)EE .

Calculated percentage values of the relative power integral defined above are given in the last
five columns of Table 1. The entries in each row are the results corresponding to the parameter
range specified by the first four columns. Note q = Q/We =r,/a. Hence q is the ratio of the jet
radius to the capillary length. The values of k, k; and w in each row correspond to the disturbance
with the maximum spatial growth rates for each case. The radius of droplet resulting from the
instability may be estimated by equating the volume of the circular cylindrical jet of length A
corresponding to the maximum growth rate with the volume of a spherical drop of radius R,

n1,2 k=4 TR /3 , which gives Ry = (3n/2kp !B, . (15)

The values k. in the first four rows of Table 1 are all smaller than one. It foilows from Eq. (15) that
the radius of drops formed from the jet breakup in the ranges of the flow parameters specified in
these rows are all larger than the jet radius. On the other hand the values of k; in the last four
rows are all much larger than one. Thus the droplets radius for these cases are all much smaller
than the jet radius. If we define atomization as the process of breaking up a liquid jet into droplets
of radius much smaller than the jet radius, then the latter cases correspond to the atomization
regime. The former cases of jet breakup into drops of radius larger than the jet diameter is caused
by a mechanism different from that of atomization as will be explained presently. We shall call
the former mode of jet breakup the Rayleigh mode. Table 1 shows that while the surface tension
power terms in the Rayleigh mode are all positive, they are all negative in the atomization mode.
Thus the capillary force cannot contribute to the positive growth of the disturbance kinetic energy
which is essential for the onset of atomization. However, the capillary pinching is the cause of
the jet breakup in the Rayleigh mode, since the positive surface tension power integral dominates
all other terms in the energy budget as can be seen from Table 1. Hence the surface tension has a
dual role of destabilizing the Rayleigh mode and stabilizing the atomization mode. This feature has
not been pointed out previously. The cause of atomization can be identified as the gas pressure
fluctuation since its power integral is positive and dominates all other items in the energy budget.
Notice that gas pressure power integrals are all positive in the Rayleigh mode as well as in the
atomization mode. Thus the gas pressure fluctuation may assist the capillary pinching in the




Rayleigh mode. However it is not essential, since even in the absence of the ambient gas the gas
pressure fluctuation vanishes, but the destabilizing capillary force remains dominant. On the
other hand the gas pressure fluctuation is essential for the atomization process, since as Q becomes
smaller than W, the pressure power integral loses its dominance to the surface tension power
integral. Then, &e breakup is by capillary pinching. Observe that q<1 for the Rayleigh mode, and
g>1 for the atomization mode. It appears that q is the most convenient parameter to use to
determine whether an operation is in the atomization regime or in the Rayleigh regime. Note that
q involves only the physical properties T, p, and the jet velocity U.

DISCUSSION AND CONCLUSIONS

In this study the effect of gas viscosity is neglected. A justification is required. Itis seenin
Table 1 that as the Reynolds number is increased dramatically with We and Q held constant, the
ratio of drop radius to jet radius for the fastest growing mode is relatively constant. This signifies
that the size of the atomized droplets scales with the capillary length a = r,W./Q, and is
insensitive to the viscous force variation. This is consistent with known experiments, because the
observed droplet size scales with a but not with the shear wave length. Shear waves are the
product of the interfacial boundary-layer instability caused by the viscous force in gas. The shear
wave length was estimated by Lin and Kang (1987) to be two order of magnitude larger than the
capillary length. This result justifies the neglect of gas viscosity in the analysis. However, the
precise effect of gas viscosity remains to be investigated by keeping the gas viscosity in the
complete stability analysis. Cavitation and other effects inside the nozzle flow are not considered
explicitly in this study. They are treated as sources of disturbances which create interfacial
instability. This is justifiable because the actual sites of atomization are at the liquid-gas interface,
although some of the seeds of atomization may have already been sowed inside the nozzle. With
these understandings, we arrive at the following conclusions.

The main energy source of atomization of a viscous Newtonian liquid in an inviscid gas is
the power imparted by the fluctuating pressure of the gas on the liquid jet. When the ambient gas
is so thin that the capillary length is larger than the jet diameter, i.e. q<1, the jet breakup is no
longer by atomization but by an entirely different mechanism of capillary pinching.

This work was supported in part by Grant No. DAALO-386-K-0072 of the Army Research
Office, Grant No. MSM-8817372 of National Science Foundation, and a New York State Science
and Technology Grant. The computaton was carried out with the Cornell National
Supercomputer Facility which is funded in part by NSF, New York State, and the IBM
Corporation.
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APPENDIX F

Navier-Stokes Flow for the

Initial Stage of Atomization

D.J. Kang and S.P. Lin

Department of Mechanical and Industrial Engineering
and Institute of Colloid and Surface Sciences

Clarkson University, Potsdam, New York 13676

A nonlinear theory of ~tomization is given. The govemning equations are the
Navier-Stokes equations. The boundary conditions involve the unknown boundary of an
atomizing jet. The relevant system of partial differential equaitons are reduced to a system of
nonlinear o.rdinary deifferential equations by use of the Galerkin projection and a‘ finite
difference discretization respectively in the radial and the axial direction of the jet. The
reduced system is solved numerically with given initial conditions for various flow
parameters. The theoretical results reveal that origin of atomization is the pressure fluctuation
at the core of the liquid jet. This pressure fluctuation resonates subharmonically the interfacial
capillary waves which lead to the formation of ligaments which are the precursors of the

atomized droplets.




INTRODUCTION

The process of breaking up a liquid jet, which emanates from a nozzle into an ambient
gas, into droplets of diameters much smaller than the jet diameter is called atomization. The
process has various applications including aerosol generation, liquid fuel injection in internal
combustion engines, formation of pharmaceutical mist, and spray coatings. Despite its
practical importance, our understanding of the fundamental mechanism of atomization is far
from complete, as can be seen from the recent review articles (1,2). Careful analyses by Reitz
and Bracco (3) of existing experimental works on atomization seemed to eliminate the
turbulence fluctuation, cavitation, pressure fluctuation and boundary-layer instability in the
nozzle as the fundamental mechanisms of atomization. While the above mentioned factors
certainly influence the outcome of atomization, the site of atomization is actually at the
liquid-gas interface. It has been shown recently (4-7) that in contrast to the breakup of ink
jets, which is due to capillary pinching, the cause of atomization is the pressure fluctuation at
the liquid-gas interface. However, these findings are based on the large time asymptotic
linear stability theory. Moreover, the source of energy which generates the interfacial pressure
fluctuation was not identified. A nonlinear nonstationary theory of atomization is not yet
available. The purpose of this work is to fill this gap. The results of the nonlinear theory show
that the energy of atomization is supplied from the core of the jet to the interface, instead of

from the gas to the jet through the action of interfacial shear as is commonly believed (8).




STABILITY ANALYSIS

The detail of stability analysis is available (9). Only the outline of the analysis will be
given. Previous studies (10,11) show that a jet without swirl is most unstable with respect to
axisymmetric infinitesimal disturbances. @ We consider here only the axisymmetric
disturbances in Newtonian imcompressible liquid and gas. Moreover, the gravity effect on
atomization is neglected. The governing differential equations are the Navier-Stokes

equations which in terms of Stokes stream function can be reduced to

1 d(y; E«yy) 2 1 v
Ely;, - ;__WI__ZEI_ - iyEZ‘Vi' — EA‘vVi:O’ (1]

A(x,y) x2 Re Vi
where x, y are respectively the radial and axial distances nondimensionalized with the nozzle
radiusry Tis the time normalized with ro/W,, W, being the maximum jet velocity, y is the
stream function nondimensionalized with Wo r°2, d(, YIo(x,y) is the Jacobian operator, and
R, is the Reynolds number related to the liquid density pj and the liquid dynamic viscosity f, by

R, =p1 Woro/Ht E2=9 -l-a+a
e~ ¥Fl Vool XX~ X x " Yyy
The subscripts T, x and y in [1] denote partial differentiations and the subscript i denotes the

liquid phase or the gas phase depending onif i =1 or 2.

The boundary conditions of (1] are:

the boundness of the flow along the jet axisatx =0, i.e.,

Viy =Vix=0; 2]

the normal force balance at the interface x = h(y,t),




ReWe(hyy(1+h 232011442172 =
(G4 IR/ - WK% + WX + Wiy X + By (W /Xy + 20y /)y
+ 02 (Wy/X)gx + Zhy(Wy/R)yy - ZhgWyyn/ - ByyWy/x
- B2 (W gy - Wy /5D - (Wl + (WX WXy - YWy /X2
- By (Wry/x + Wy (Wy/x - Wy X2V - YWy XD IR P12

where [f(\v)]lz = {f(y)- f(y)l;

the tangential interfacial force balance including the surface tension o,

[G/MDIC - By DXy % - Wy % + Yyx2) + 2hy 24y % - wyx )11 =0,

W, = Weber number = o/plrowoz;
the kinematic interfacial boundary condition

hhe - Yixhy - Wiy =0;(G(=10r2) ;

the continuity of velocity at interface x = h(t,y)

Viy-V2y = 0,

Vix-Vax =0

and the no-slip condition at the cylindrical gas chamber wall atr =1, i.e.,

Y2x =V2y =0

(3]

(4]

(3]

(6]

(7}

(8]

The initial condition is chosen to be a flow which satisfies the governing equation [1]

and its boundary conditions [2] to [8] exactly. The inidal flow is




v1(x.y.0) = 0.5 x2(0.5X%/c - 1) =y}
Va(x,y,0) = 0.5 x2uc)(0.5 x2 - 12) =y
h()’.O) =1

c=1-(1-12/, 1= poM,. 9]

The flow inside the nozzle will be assumed to remain unperturbed and remains the

same as the initial flow given by [9], i.e.,

v Xy, D) =v10. by, =1,y<0. {10]

Similarly the flow in the region y < 0 of the gas chamber will be assumed to be

Yo (x,y,T) =20, y < 0. {11]

The solution of (1] will be expanded as

M
VIRYD =YD+ T App(ty)x™+l
m=1
M
Yoy = I Agp(ty)x-Hm+l (12]
m=]

Vo(x0) = (¢/16)(x* - 2cx2), e = [4(1+8cos(wr))Yc(1+5),

where & and ® are respectively the amplitude and frequency of the external forcing. Note
that [9] satisfies the boundness condition [2] and the no-slip condition [8). In order to satisfy

the initial condition of y;, we must choose
AijpmOy)=0 , l<m<M.

By use of the relation




x2=(x- N2 +2(x- Dl + 12,
x¥=(x-D4+alx- D3 +62(x - D2 +4Bx - + B,
it is easily shown that in order to satisfy the initial condition for y,, we must have
A100.y) = Bluc, Ago(0y) = lc,
Ay3(0,y) = lfdpc, Ay (0,y) =0, (m > 4). [13]
Substituting [12] into [1] and multiplying the resulting equation with 2axB; ., B, being
the coefficients of A, in [12] and integrating from x=0 to h for i=1
R 2mo™* ! (eq. [1]) dx, (@ =1.2,..M)
and between x=h to ! for i=2,
[l 2nx(x-DM*1 (eq. (1)) dx, (@ =12,...M)

we obtain 2 sets of M differential equations in dependent variable A;,(t,y) and h(t,y). Then

we discretize A;,(t,y) and h(t,y) iny, i.e,,

Ajn (1) = A (T.nAy), ho(1) ~ h(t,nAy), (n = 1,2,...N). (14)

The system of 2M differential equations must be satisified at each spatial nodal point atn=1to
N. Hence we have a system of IM N equations in 2M N+ N unknowns, A; (1), (i = 1,2)
and h,(1). The interfacial boundary conditions [3] and [4] provide 2N differential equations
and the rest of interfacial conditions [5], [6] and [7] provide additional 3N algebraic equations

in time. The total number of equations is therefore




2M N + 5N.

It is easily seen that in order to make the number of equations equal to that of the unknowns,
we must choose M such that M=M+2. This is a Galerkin method which minimizes the residual

(11) associated with eq. [1] and its boundary conditions in the radial direction.

The spatial discretization in the y-direction was achieved by use of the fourth order
central difference scheme. In order to solve the resulting system of (2M+1)N equations for
Aimn and Ay and hy, we must specify the inlet conditions [10] and [11] in terms of them.

It is easily verified from [12]-[14] that these conditions for the fourth order scheme require

Alm(-n) (t) = 0' (l <mg M);
A21(-n) (W =A2100.y), A2y(.p) (U = A22(0.y)
A23(_n)(‘t) = A23(0,y), h(_n) () =1, (n=0,1,2,3).

As the discretization in the y-direction is truncated at a finite axial distance, we must also
specify the downstream conditions. The following periodic conditions are used as the

downstream condition for the fourth order finite difference scheme,

Aim(N+n) = Aim(n)’
M=y (= 10e1234)

The above constructed nonlinear system of ordinary differential equations in time was solved

by use of ODEPACK (13). The results are presented in the next section.




RESULTS

The streamline patterns of the disturbance in the liquid phase velocity at t=0.01 and 1
= 0.1 are given respectively in Fig. 1(a) and Fig. 1(b) for the flow parameters, p = p5/p; =
1.3x 10'3,u=0.018,8=0.05.(o=0.02, W= 1.963x10‘5,Rc= 18360.5. The given valuesof p and
H correspond to a water jet in atmosphere. W, = 1.963x10° and R, = 18360.5 are typical
values encountered in the liquid jet atomization process. It is observed that a series of
counterrotating vortex rings are quickly formed around the core of the liquid jet. This series of
vortex rings creates a meandering axisymmetric jet stream in the axial direction. The
meandering is obviously created by the pressure fluctuation along the jet axis. This jet stream
in turn drives a series of vortex rings near the liquid-gas interface. The average distance
between these interfacial vortices is approximately 0.02 which scale with the capillary length

c/pzwoz, since
(0/pa Wity = (P1/p7)W, = 0.015.

Note that the average distance between the counterrotating core vortex rings is
approximately one ‘half of the distance between interfacial vortex rings. To see if these
disturbance length scales are affected by the extent of the chosen computational domain and
its step size Ay, we increased the domain and its step size in the axial direction by fifty
percent. The length scales changed by approximately ten percent. This is not surprising, in
view of the fact that our results were obtained with M=4 and N=20. However the qualitative
features of the vortex generation remains the same. The effects of larger values of M and N

will be discussed later. The dotted lines in Fig. 1 are streamlines obtained by extrapolation.

Fig. 2 gives the corresponding streamline pattern of the disturbance in the gas chamber.

The disturbance velocity gradients near the interface are two orders of magnitude larger than




their counterparts in the liquid phase as they should be, since the dynamic viscosity of the gas
is two orders of magnitude smaller than that of the liquid and the tangential dynamic
boundary condition can be satisfied only by a velocity gradient which is two orders of
magnitude larger. The distance between two neighboring vortex rings again scales with the
capillary length rather than the shear wave length. The shear wave length, A can be
estimated (4) with the critical wave length of the unstable Blasius boundary-layer profile

which gives
Nty = 800(vo/v1)/0.096R, = 6.8

with R, = 18360 and v,/v|=15 which is the kinematic viscosity ratio. Thus, the shzar wave is
approximately two orders of magnitude longer than the capillary length at such a small Weber
number 1.964 x 10~ and p2/p1 >>W,. Owing to the same sense of rotation for the vortex rings
on both sides of the interface, the vortices in the air cannot be driven by their counterpart in
the liquid across the interface. The larger eddies in the middle of gas chamber seem to extract
energy from the basic flow and feed into the eddies near the interface. Similar flow patterns
are found for other parameter ranges in the atomization regime in which W, << p. Thus the
origin of the atomizaticn appears to be the pressure fluctuation at the core of the basic flow
because the interfacial wavelength does not scale with the shear waves. The interfacial
capillary waves seem to resonate subharmonically with the pressure fluctuation around the
jet axis. The pressure fluctuation at the interface gives rise to the radial component of the
interfacial velocity, and causes the formation of ligaments. The formation of ligaments is the
precursor of atomization. It should be pointed out that the interfacial displacements in these

figures are not drawn to the same scale as the radial position for clarity.

The parameter values for Figs. 3 and 4 are identical to those for Figs. 1 and 2 except the

dynamic viscosity ratio is now decreased by a factor of 10. It is seen that the jet core vortex




rings are now retarded by the strong viscous effect. The transmission of the pressure
fluctuation becomes less efficient, in spite of the fact that the eddies in the gas phase are now
much more vigorous. This is consistent with the experimental observation that viscosity of the

liquid tends to hinder atomization (1,3).

The transient growth of the disturbance depicted in Figs. 1-4 are only up to t=0.1.
When computation is advanced beyond t=0.1, no qualitative changes have been observed.
However as 1 increases, the time steps of integration required for the convergent iterative
solution become increasingly smaller. When T exceeds approximately 0.3, the iterative
solutions become explosively large. This is most likely due to the exaggerated instability
associated with the fact that the differential system obtained with M=4 and N=20 is no longer
adequate to capture the everdecreasing small length and time scales which are actually
present in the physical phenomenon. When M was increased to 5, we are able to advance the
computation beyond 1=0.3 only when the time and spatial resolution are increased to 106
and 103 respectively. However, the iterative solution requires several hours of
supercomputer time to converge. Even then only a few time steps can be advanced, and the
solutions including the interfacial wave amplitude become again explosively large. It is most
likely that neither the truncated system nor the method of solution are adequated to resolve
the fine scales involved in the physical phenomenon for large times. For this reason, the
results are presented only up to T=0.1. However, the obtained results seem to capture the
essential mechanism of atomization which is already discernable in the initial stage. It should
be pointed out that the vortex structure predicted in the work has not yet been experimentally
demonstrated. Quantitative measurements which are accurate enough to resolve a length
scale smaller than the capillary length in the flow field are required to substantiated the

present finding.
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Fig. 5 shows the effect of the frequency of external forcing on the capillary wave
formation. The varations of the wave amplitude along the jet axis are plotted for the
atomization parameters indicated in the figure caption and for three frequencies of external
forcing at © = 0.1. The capillary wave frequency corresponding to the zero external forcing
frequency is 40. As the extemnal forcing frequency @ is increased from zero to 0.02, the
disturbance amplitude increases dramatically and modulates to form a wave packet. The
wave length of the wave packet is decreased slightly as w is increased further from 0.02 t0 0.05
without altering appreciably the capillary wave length. The practical implication is that an
external forcing with a frequency much smaller than the capillary wave frequency cannot
alter the most popular droplet size but tends to increase the number of larger drops which scale
with the wave pakcet length. Fig. 6 shows that the capillary wave amplitude can be
increased dramatically by increasing the amplitude of the external forcing. However, the

wavelength cannot be changed at ® = 0.02 which is much smaller than the natural frequency.
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FIGURE CAPTIONS

FIG. 1. Streamline pattern of disturbances in liquid phase.
(a) t=0.01, Ay’ =0.2x 105,
(b) T=0.10, Ay;’ = 0.2 x 105,

FIG. 2. Streamline pattern of disturbances in gas phase.
(2) T=0.01, Ay’ = 0.47684 x 1075,
(b) T=0.1, Ay,’ = 0.49591 x 104,

FIG. 3. Streamline pattern of disturbances in liquid phase at T=10.1, Ay’ = 0.1 x 104,
i =0.0018.

FIG. 4. Streamline pattern of disturbances in gas phase at T = 0.1, Ayy” = 0.49591 x
104, 1 = 0.0018.

FIG. 5. Effects of the forcing frequency at T=0.1; R, = 18360.5, W, = 1.964 x 10-5,p =

1.3x 1073, 1 =0.018,5=0.05, I=7.

FIG. 6. Effects of the forcing amplitude at t=0.1; R, = 18360.5, W, = 1.964x 105, p =
1.3x103, 1= 0018, 0=0.02,1=7.
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APPENDIX G

Toward Monodispersed Atomization

The objeotive of this preliminary test is to demonstrate that the mean
diameter of the droplets gemerated by a jet atomizer can be reduced by
imparting an external vibration of sufficiently bigh fregquency near the
nozzle exit. The general layout of the experiment is given in Figure D-1.

1 ... . vV_._
CONSTANT HEAD
LIQUID ’///,—- SONIFIER
GENERATOR
k
PHASE/DOPPLER F
PARTICLE iﬁ
ANALYZER S
. AN A ‘.-\ SPRAY
=
| .\ )
2500 psi
—_—— . A - S
N,
RECEIVER
77 CARRr N A A R A A
FIGURE D-1

A twin-fluid injector, wbose important dimensions are given Figure D-2, is
connected to a water reservoir from above., The injector has a side inlet
connected to a 2500 psia N2 canister. When the valves at the canister and

the reservoir are opened & spray emanates from the nozzle. The pressure of
Nz entering into the injector is controlled by a pressure gaunge. The size

distribution and the veloocity of tbhe droplet in the spray are measured by
use of the Aerometrics Phase/Doppler particle analyzer. The droplets are
collected in a receivor on the floor of a bood. In order to demonstrate
the effect of an external forcing, a sonifier (Model 185, Bransonm, Sonic




Power) is inserted into the reservoir and reaches as far as possible into
the injector. The sonifier is conmected to a variable power frequency
generator at 20 kﬂz'

. The results for a fixed small volume in the jet without external
forcing is given in Figure D~3. The velocity of the water jet is
determined by dividing the water discharge rate by the jet crossectional
area. The air velocity is measured with a hot wire at several key points.
The average relative velocity of gas-to liquid is found to be approximately

40 M/s. The corresponding capillary length Blpzﬂz is calculated to be

38um. The measured arithmatic mean, ares mean, volume wean and Szuter mean
diameters are 38.8, 42.6, 46.7 and 56.2 um respoctively. Thus the droplet
sizes do in deed scale to the capillary length as predicted by the theory.
The results for the case of external forcing witbh the sonifier is given in
Figure D-4. The arithmetic, area, volume, and Saunter mean diameters are
now 33.0, 36.5, 40.3 and 49.1 um respectively. Thus the mwean diameter is
reduced by approximately 6 um. Moreover, it is seen from the histograms
tbat the wost populous droplets dismeter is reduced from approximately 30
to 20 um. Note that the external forcing is applied at the nozzle inlet
instead of at the outlet which is the ideal place as explaineda in the main
proposal. Consequently the whole reservoir system is set into motion which
created unwanted noise. Moreover the introduced frequency is one order of
magnitude smaller than the resonant frequency which is hundreds of kﬂz

according to the theory. This bigh frequency will be achieved by use of
the piezoelectric crystal described in the main proposal. Despite of these
inadequacies, the results of this preliminery test seem to convimcingly
demonstrate that nearly uniform micron and submicron droplets may be formed
by reguolating the external forcing at the tip of the atomization nozzle,
precisely at the resonant frequency.
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FIGURED2. - DIAGRAM OF PNEUMATIC TWO-FLUID ATOMIZER.
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